These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 39110161)

  • 1. Role of proprioception in corrective visually-guided movements: larger movement errors in both arms of a deafferented individual compared to control participants.
    Jayasinghe SAL; Sainburg RL; Sarlegna FR
    Exp Brain Res; 2024 Oct; 242(10):2329-2340. PubMed ID: 39110161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proprioceptive deafferentation slows down the processing of visual hand feedback.
    Balslev D; Miall RC; Cole J
    J Vis; 2007 Sep; 7(5):12.1-7. PubMed ID: 18217852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rare case of deafferentation reveals an essential role of proprioception in bilateral coordination.
    Schaffer JE; Sarlegna FR; Sainburg RL
    Neuropsychologia; 2021 Sep; 160():107969. PubMed ID: 34310971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive recalibration arises slowly compared to reach adaptation.
    Zbib B; Henriques DY; Cressman EK
    Exp Brain Res; 2016 Aug; 234(8):2201-13. PubMed ID: 27014777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of target sensory modality on motor planning may reflect errors in sensori-motor transformations.
    Sarlegna FR; Przybyla A; Sainburg RL
    Neuroscience; 2009 Dec; 164(2):597-610. PubMed ID: 19647787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared bimanual tasks elicit bimanual reflexes during movement.
    Mutha PK; Sainburg RL
    J Neurophysiol; 2009 Dec; 102(6):3142-55. PubMed ID: 19793874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimanual circling in deafferented patients: evidence for a role of visual forward models.
    Mechsner F; Stenneken P; Cole J; Aschersleben G; Prinz W
    J Neuropsychol; 2007 Sep; 1(2):259-82. PubMed ID: 19331020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioception contributes to the sense of agency during visual observation of hand movements: evidence from temporal judgments of action.
    Balslev D; Cole J; Miall RC
    J Cogn Neurosci; 2007 Sep; 19(9):1535-41. PubMed ID: 17714014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand.
    Mostafa AA; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jun; 232(6):1639-51. PubMed ID: 24468724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy.
    Ghez C; Gordon J; Ghilardi MF
    J Neurophysiol; 1995 Jan; 73(1):361-72. PubMed ID: 7714578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control.
    Chomienne L; Blouin J; Bringoux L
    J Neurophysiol; 2021 Jan; 125(1):154-165. PubMed ID: 33174494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural foundations of handedness: insights from a rare case of deafferentation.
    Jayasinghe SAL; Sarlegna FR; Scheidt RA; Sainburg RL
    J Neurophysiol; 2020 Jul; 124(1):259-267. PubMed ID: 32579409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of target modality on visual and proprioceptive contributions to the control of movement distance.
    Sarlegna FR; Sainburg RL
    Exp Brain Res; 2007 Jan; 176(2):267-80. PubMed ID: 16896981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiencing the Cross-Sensory Error Signal During Movement Leads to Proprioceptive Recalibration.
    Maksimovic S; Neville KM; Cressman EK
    J Mot Behav; 2020; 52(1):122-129. PubMed ID: 30761949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the cross-sensory error signal in visuomotor adaptation.
    Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2013 Jul; 228(3):313-25. PubMed ID: 23708802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.