These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39110874)

  • 1. Spatially Resolved Uncertainties for Machine Learning Potentials.
    Heid E; Schörghuber J; Wanzenböck R; Madsen GKH
    J Chem Inf Model; 2024 Aug; 64(16):6377-6387. PubMed ID: 39110874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions.
    Di Pasquale N; Davie SJ; Popelier PLA
    J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty-driven dynamics for active learning of interatomic potentials.
    Kulichenko M; Barros K; Lubbers N; Li YW; Messerly R; Tretiak S; Smith JS; Nebgen B
    Nat Comput Sci; 2023 Mar; 3(3):230-239. PubMed ID: 38177878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Atomic-Resolution Uncertainty Estimation for Neural Network Potentials Using a Replica Ensemble.
    Jeong W; Yoo D; Lee K; Jung J; Han S
    J Phys Chem Lett; 2020 Aug; 11(15):6090-6096. PubMed ID: 32598159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Peptides with Classical and Novel Machine Learning Force Fields: A Comparison.
    Rosenberger D; Smith JS; Garcia AE
    J Phys Chem B; 2021 Apr; 125(14):3598-3612. PubMed ID: 33798336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression of Geographic Atrophy: Epistemic Uncertainties Affecting Mathematical Models and Machine Learning.
    Arslan J; Benke KK
    Transl Vis Sci Technol; 2021 Nov; 10(13):3. PubMed ID: 34727162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model.
    Peerless JS; Kwansa AL; Hawkins BS; Smith RC; Yingling YG
    J Chem Inf Model; 2021 Apr; 61(4):1745-1761. PubMed ID: 33729778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows.
    Gelžinytė E; Wengert S; Stenczel TK; Heenen HH; Reuter K; Csányi G; Bernstein N
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairwise Difference Regression: A Machine Learning Meta-algorithm for Improved Prediction and Uncertainty Quantification in Chemical Search.
    Tynes M; Gao W; Burrill DJ; Batista ER; Perez D; Yang P; Lubbers N
    J Chem Inf Model; 2021 Aug; 61(8):3846-3857. PubMed ID: 34347460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching.
    Yu Z; Annamareddy A; Morgan D; Wang B
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38310473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explainable uncertainty quantifications for deep learning-based molecular property prediction.
    Yang CI; Li YP
    J Cheminform; 2023 Feb; 15(1):13. PubMed ID: 36737786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning potentials for complex aqueous systems made simple.
    Schran C; Thiemann FL; Rowe P; Müller EA; Marsalek O; Michaelides A
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34518232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.