These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39110913)

  • 1. Depletion Flocculation of High Internal Phase Pickering Emulsion Inks: A Colloidal Engineering Approach to Develop 3D Printed Porous Scaffolds with Tunable Bioactive Delivery.
    Shahbazi M; Jäger H; Huc-Mathis D; Asghartabar Kashi P; Ettelaie R; Sarkar A; Chen J
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):43430-43450. PubMed ID: 39110913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating.
    Ghosh S; Yadav A; Rani S; Takkar S; Kulshreshtha R; Nandan B; Srivastava RK
    Langmuir; 2023 Feb; 39(5):1927-1946. PubMed ID: 36701663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application.
    He X; Lu Q
    Adv Colloid Interface Sci; 2024 Feb; 324():103086. PubMed ID: 38244533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A smart thermoresponsive macroporous 4D structure by 4D printing of Pickering-high internal phase emulsions stabilized by plasma-functionalized starch nanomaterials for a possible delivery system.
    Shahbazi M; Jäger H; Ettelaie R; Chen J; Mohammadi A; Kashi PA; Ulbrich M
    Curr Res Food Sci; 2024; 8():100686. PubMed ID: 38380133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Poly(ε-caprolactone)-embedded Lignin-Chitosan Nanocomposite Porous Scaffolds from Pickering Emulsions.
    Li Y; Peng Y; Hu Y; Liu J; Yuan T; Zhou W; Dong X; Wang C; Binks BP; Yang Z
    Langmuir; 2023 May; 39(20):6947-6956. PubMed ID: 37172292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions.
    Hu Y; Wang J; Li X; Hu X; Zhou W; Dong X; Wang C; Yang Z; Binks BP
    J Colloid Interface Sci; 2019 Jun; 545():104-115. PubMed ID: 30875507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate.
    Zhou FZ; Zeng T; Yin SW; Tang CH; Yuan DB; Yang XQ
    Food Funct; 2018 Feb; 9(2):959-970. PubMed ID: 29322140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing.
    Yang T; Hu Y; Wang C; Binks BP
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22950-22958. PubMed ID: 28636315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks.
    Lu S; Pei Z; Lu Q; Li Q; He Y; Feng A; Liu Z; Xue C; Liu J; Lin X; Li Y; Li C
    Food Chem; 2024 Jul; 446():138810. PubMed ID: 38402769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications.
    Tyowua AT; Harbottle D; Binks BP
    Adv Colloid Interface Sci; 2024 Oct; 332():103274. PubMed ID: 39159542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals.
    Miao C; Mirvakili MN; Hamad WY
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2820-2829. PubMed ID: 34802766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing.
    Shahbazi M; Jäger H; Ettelaie R
    ACS Appl Mater Interfaces; 2022 May; 14(18):21392-21405. PubMed ID: 35476424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of a Metal-Organic Framework into 3 D Hierarchical Porous Monoliths Using a Pickering High Internal Phase Emulsion Template.
    Zhu H; Zhang Q; Zhu S
    Chemistry; 2016 Jun; 22(26):8751-5. PubMed ID: 27123547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight Aerogels with Hierarchical Porous Structures Prepared from Cellulose Nanocrystal Stabilized Pickering High Internal Phase Emulsions.
    Qiao M; Yang X; Zhu Y; Guerin G; Zhang S
    Langmuir; 2020 Jun; 36(23):6421-6428. PubMed ID: 32432883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Promising Therapeutic Soy-Based Pickering Emulsion Gel Stabilized by a Multifunctional Microcrystalline Cellulose: Application in 3D Food Printing.
    Shahbazi M; Jäger H; Ettelaie R
    J Agric Food Chem; 2022 Feb; 70(7):2374-2388. PubMed ID: 35143723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Characterization of Novel Water-Insoluble Protein Porous Materials Derived from Pickering High Internal-Phase Emulsions Stabilized by Gliadin-Chitosan-Complex Particles.
    Zhou FZ; Yu XH; Zeng T; Yin SW; Tang CH; Yang XQ
    J Agric Food Chem; 2019 Mar; 67(12):3423-3431. PubMed ID: 30835109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.