These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 39110913)

  • 21. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils.
    Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Internal Phase Emulsion for Food-Grade 3D Printing Materials.
    Li X; Xu X; Song L; Bi A; Wu C; Ma Y; Du M; Zhu B
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45493-45503. PubMed ID: 32871079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance.
    Bi AQ; Xu XB; Guo Y; Du M; Yu CP; Wu C
    Food Chem; 2022 Mar; 371():131349. PubMed ID: 34808768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of all-natural water-in-oil high internal phase pickering emulsion by using diosgenin/soybean phosphatidylethanolamine complex: Characterization and application in 3D printing.
    Wang M; Zhou Y; Fan L; Li J
    Food Chem; 2024 Aug; 448():139145. PubMed ID: 38555692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing.
    Li Z; Zhang L; Shan Y; Zhao Y; Dai L; Wang Y; Sun Q; McClements DJ; Cheng Y; Xu X
    Food Chem; 2024 Dec; 460(Pt 1):140402. PubMed ID: 39059330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-printed cellulose nanocrystals and gelatin scaffolds with bioactive cues for regenerative medicine: Advancing biomedical applications.
    Singh P; Baniasadi H; Gupta S; Ghosh R; Shaikh S; Seppälä J; Kumar A
    Int J Biol Macromol; 2024 Oct; 278(Pt 1):134402. PubMed ID: 39094885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals.
    Capron I; Cathala B
    Biomacromolecules; 2013 Feb; 14(2):291-6. PubMed ID: 23289355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultralight Aerogels with Hierarchical Porous Structures Prepared from Cellulose Nanocrystal Stabilized Pickering High Internal Phase Emulsions.
    Qiao M; Yang X; Zhu Y; Guerin G; Zhang S
    Langmuir; 2020 Jun; 36(23):6421-6428. PubMed ID: 32432883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing.
    Guo Z; Li Z; Cen S; Liang N; Muhammad A; Tahir HE; Shi J; Huang X; Zou X
    Carbohydr Polym; 2023 Aug; 313():120764. PubMed ID: 37182940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stabilization of ginger essential oil Pickering emulsions by pineapple cellulose nanocrystals.
    Phosanam A; Moreira J; Adhikari B; Adhikari A; Losso JN
    Curr Res Food Sci; 2023; 7():100575. PubMed ID: 37680695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Porous Protein Scaffold Templated from High Internal Phase Emulsion Costabilized by Gelatin and Gelatin Nanoparticles.
    Tan H; Tu Z; Jia H; Gou X; Ngai T
    Langmuir; 2018 Apr; 34(16):4820-4829. PubMed ID: 29631405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery.
    Yan H; Chen X; Feng M; Shi Z; Zhang W; Wang Y; Ke C; Lin Q
    Colloids Surf B Biointerfaces; 2019 May; 177():112-120. PubMed ID: 30716696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an Antioxidative Pickering Emulsion Gel through Polyphenol-Inspired Free-Radical Grafting of Microcrystalline Cellulose for 3D Food Printing.
    Shahbazi M; Jäger H; Ettelaie R
    Biomacromolecules; 2021 Nov; 22(11):4592-4605. PubMed ID: 34597024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pickering emulsion stabilization with colloidal lignin is enhanced by salt-induced networking in the aqueous phase.
    Tian J; Chen J; Wang P; Kang S; Guo J; Zhu W; Jin Y; Song J; Rojas OJ
    Int J Biol Macromol; 2024 Aug; 274(Pt 2):133504. PubMed ID: 38944069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.