These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 39111018)
1. Kobresia humilis via root-released flavonoids recruit Bacillus for promoted growth. Li J; Wu L; Zhou Y; Xie Y; Lu F; Chang F; Yang X; Han X; Cheng M Microbiol Res; 2024 Oct; 287():127866. PubMed ID: 39111018 [TBL] [Abstract][Full Text] [Related]
2. Distribution of rhizosphere fungi of Guo J; Xie Z; Meng Q; Xu H; Peng Q; Wang B; Dong D; Yang J; Jia S PeerJ; 2024; 12():e16620. PubMed ID: 38406296 [No Abstract] [Full Text] [Related]
3. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Yue H; Yue W; Jiao S; Kim H; Lee YH; Wei G; Song W; Shu D Microbiome; 2023 Mar; 11(1):70. PubMed ID: 37004105 [TBL] [Abstract][Full Text] [Related]
4. Environmental Response to Root Secondary Metabolite Accumulation in Paeonia lactiflora: Insights from Rhizosphere Metabolism and Root-Associated Microbial Communities. Sun X; Zhang X; Zhang G; Miao Y; Zeng T; Zhang M; Zhang H; Zhang L; Huang L Microbiol Spectr; 2022 Dec; 10(6):e0280022. PubMed ID: 36318022 [TBL] [Abstract][Full Text] [Related]
5. Grazing practices affect phyllosphere and rhizosphere bacterial communities of Kobresia humilis by altering their network stability. Hu JP; Zhang MX; Lü ZL; He YY; Yang XX; Khan A; Xiong YC; Fang XL; Dong QM; Zhang JL Sci Total Environ; 2023 Nov; 900():165814. PubMed ID: 37517723 [TBL] [Abstract][Full Text] [Related]
6. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Zhou X; Zhang J; Khashi U Rahman M; Gao D; Wei Z; Wu F; Dini-Andreote F Mol Plant; 2023 May; 16(5):849-864. PubMed ID: 36935607 [TBL] [Abstract][Full Text] [Related]
7. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Plateau. Yuan X; Chen Y; Qin W; Xu T; Mao Y; Wang Q; Chen K; Zhu B Sci Total Environ; 2021 Oct; 790():148072. PubMed ID: 34098273 [TBL] [Abstract][Full Text] [Related]
8. Rhizosphere competent inoculants modulate the apple root-associated microbiome and plant phytoalexins. Hauschild K; Orth N; Liu B; Giongo A; Gschwendtner S; Beerhues L; Schloter M; Vetterlein D; Winkelmann T; Smalla K Appl Microbiol Biotechnol; 2024 May; 108(1):344. PubMed ID: 38801472 [TBL] [Abstract][Full Text] [Related]
9. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Wang C; Cao G; Wang Q; Jing Z; Ding L; Long R Sci China C Life Sci; 2008 Jan; 51(1):86-94. PubMed ID: 18176796 [TBL] [Abstract][Full Text] [Related]
10. Spatial variations of root-associated bacterial communities of alpine plants in the Qinghai-Tibet Plateau. Wei X; Yu L; Han B; Liu K; Shao X; Jia S Sci Total Environ; 2022 Sep; 839():156086. PubMed ID: 35605870 [TBL] [Abstract][Full Text] [Related]
12. Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities. Lopes LD; Wang P; Futrell SL; Schachtman DP Appl Environ Microbiol; 2022 Sep; 88(18):e0097122. PubMed ID: 36073926 [TBL] [Abstract][Full Text] [Related]
13. Patterns in the Microbial Community of Salt-Tolerant Plants and the Functional Genes Associated with Salt Stress Alleviation. Zheng Y; Xu Z; Liu H; Liu Y; Zhou Y; Meng C; Ma S; Xie Z; Li Y; Zhang CS Microbiol Spectr; 2021 Oct; 9(2):e0076721. PubMed ID: 34704793 [TBL] [Abstract][Full Text] [Related]
14. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Zhang Y; Xu J; Riera N; Jin T; Li J; Wang N Microbiome; 2017 Aug; 5(1):97. PubMed ID: 28797279 [TBL] [Abstract][Full Text] [Related]
15. Temporal shifts in root exudates driven by vegetation restoration alter rhizosphere microbiota in Robinia pseudoacacia plantations. Li J; Fan M; Yang L; Yang Z; Shangguan Z Tree Physiol; 2023 Jul; 43(7):1081-1091. PubMed ID: 36912478 [TBL] [Abstract][Full Text] [Related]
16. Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Beirinckx S; Viaene T; Haegeman A; Debode J; Amery F; Vandenabeele S; Nelissen H; Inzé D; Tito R; Raes J; De Tender C; Goormachtig S Microbiome; 2020 Apr; 8(1):54. PubMed ID: 32305066 [TBL] [Abstract][Full Text] [Related]
17. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Xiong YW; Li XW; Wang TT; Gong Y; Zhang CM; Xing K; Qin S Ecotoxicol Environ Saf; 2020 May; 194():110374. PubMed ID: 32120174 [TBL] [Abstract][Full Text] [Related]
18. Using multi-omics to explore the effect of Bacillus velezensis SAAS-63 on resisting nutrient stress in lettuce. Bai Y; Song K; Gao M; Ma J; Zhou Y; Liu H; Zeng H; Wang J; Zheng X Appl Microbiol Biotechnol; 2024 Apr; 108(1):313. PubMed ID: 38683244 [TBL] [Abstract][Full Text] [Related]
19. Bacterial rhizosphere community profile at different growth stages of Umorok (Capsicum chinense) and its response to the root exudates. T A PD; Sahoo D; Setti A; Sharma C; Kalita MC; S ID Int Microbiol; 2020 May; 23(2):241-251. PubMed ID: 31485795 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. Alahmad A; Harir M; Fochesato S; Tulumello J; Walker A; Barakat M; Ndour PMS; Schmitt-Kopplin P; Cournac L; Laplaze L; Heulin T; Achouak W Microbiome; 2024 Jan; 12(1):1. PubMed ID: 38167150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]