These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39111183)

  • 1. Streamlined integrated protein isoelectric focusing using microfluidic paper-based device.
    Mendes GM; d'Orlye F; Trapiella-Alfonso L; Duarte GRM; Varenne A
    J Chromatogr A; 2024 Sep; 1732():465222. PubMed ID: 39111183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic preparative free-flow isoelectric focusing: system optimization for protein complex separation.
    Wen J; Wilker EW; Yaffe MB; Jensen KF
    Anal Chem; 2010 Feb; 82(4):1253-60. PubMed ID: 20092256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Cathodic Drift during Isoelectric Focusing Using Microscale Immobilized pH Gradient Gels.
    Lomeli G; Herr AE
    Anal Chem; 2024 May; 96(21):8648-8656. PubMed ID: 38716690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient.
    Wang Z; Ivory C; Minerick AR
    Electrophoresis; 2017 Oct; 38(20):2565-2575. PubMed ID: 28722147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C; Fan ZH
    Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectric focusing on microfluidic paper-based chips.
    Yu S; Yan C; Hu X; He B; Jiang Y; He Q
    Anal Bioanal Chem; 2019 Aug; 411(21):5415-5422. PubMed ID: 31317237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry.
    Wang S; Chen S; Wang J; Xu P; Luo Y; Nie Z; Du W
    Electrophoresis; 2014 Sep; 35(17):2528-33. PubMed ID: 24789497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Three-Dimensional Paper-Based Isoelectric Focusing Device for Direct Analysis of Proteins in Physiological Samples.
    Niu J; Bao Z; Wei Z; Li JX; Gao B; Jiang X; Li F
    Anal Chem; 2021 Mar; 93(8):3959-3967. PubMed ID: 33595273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome.
    Kim KH; Moon MH
    J Proteome Res; 2009 Sep; 8(9):4272-8. PubMed ID: 19653698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis.
    Niu JC; Zhou T; Niu LL; Xie ZS; Fang F; Yang FQ; Wu ZY
    Anal Bioanal Chem; 2018 Feb; 410(6):1689-1695. PubMed ID: 29327112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistage isoelectric focusing in a polymeric microfluidic chip.
    Cui H; Horiuchi K; Dutta P; Ivory CF
    Anal Chem; 2005 Dec; 77(24):7878-86. PubMed ID: 16351133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable pH actuators and 3D integrated salt bridges as new strategies for reconfigurable microfluidic free-flow electrophoretic separation.
    Cheng LJ; Chang HC
    Lab Chip; 2014 Mar; 14(5):979-87. PubMed ID: 24430103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent flow isoelectric focusing: fast and efficient method for protein sample preparation for mass spectrometry.
    Mazanec K; Bobalova J; Slais K
    Anal Bioanal Chem; 2009 Mar; 393(6-7):1769-78. PubMed ID: 19169877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves.
    Das C; Zhang J; Denslow ND; Fan ZH
    Lab Chip; 2007 Dec; 7(12):1806-12. PubMed ID: 18030404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip protein isoelectric focusing using a photoimmobilized pH gradient.
    Xia L; Lin F; Wu X; Liu C; Wang J; Tang Q; Yu S; Huang K; Deng Y; Geng L
    J Sep Sci; 2014 Nov; 37(21):3174-80. PubMed ID: 25204739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip.
    Zhao Y; Pereira F; deMello AJ; Morgan H; Niu X
    Lab Chip; 2014 Feb; 14(3):555-61. PubMed ID: 24292781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic devices with photodefinable pseudo-valves for protein separation.
    Fan ZH
    Methods Mol Biol; 2009; 544():43-52. PubMed ID: 19488692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of dialysis membranes into a poly(dimethylsiloxane) microfluidic chip for isoelectric focusing of proteins using whole-channel imaging detection.
    Ou J; Glawdel T; Samy R; Wang S; Liu Z; Ren CL; Pawliszyn J
    Anal Chem; 2008 Oct; 80(19):7401-7. PubMed ID: 18754670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis.
    Li Y; DeVoe DL; Lee CS
    Electrophoresis; 2003 Jan; 24(1-2):193-9. PubMed ID: 12652591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Free-Flow Isoelectric Focusing with Real-Time pI Determination.
    Nagl S
    Methods Mol Biol; 2019; 1906():113-124. PubMed ID: 30488389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.