These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39111497)
1. Growth inhibition of pancreatic cancer by targeted delivery of gemcitabine via fucoidan-coated pH-sensitive liposomes. Zheng Z; Li M; Yang J; Zhou X; Chen Y; Silli EK; Tang J; Gong S; Yuan Y; Zong Y; Kong J; Chen P; Yu L; Luo S; Wang Y; Tan C Int J Biol Macromol; 2024 Oct; 277(Pt 3):134517. PubMed ID: 39111497 [TBL] [Abstract][Full Text] [Related]
2. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? Tang M; Svirskis D; Leung E; Kanamala M; Wang H; Wu Z J Control Release; 2019 Jul; 305():89-100. PubMed ID: 31096017 [TBL] [Abstract][Full Text] [Related]
3. Development of Long-Circulating pH-Sensitive Liposomes to Circumvent Gemcitabine Resistance in Pancreatic Cancer Cells. Xu H; Paxton JW; Wu Z Pharm Res; 2016 Jul; 33(7):1628-37. PubMed ID: 26964546 [TBL] [Abstract][Full Text] [Related]
4. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Ray P; Dutta D; Haque I; Nair G; Mohammed J; Parmer M; Kale N; Orr M; Jain P; Banerjee S; Reindl KM; Mallik S; Kambhampati S; Banerjee SK; Quadir M Mol Pharm; 2021 Jan; 18(1):87-100. PubMed ID: 33231464 [TBL] [Abstract][Full Text] [Related]
5. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Dalla Pozza E; Lerda C; Costanzo C; Donadelli M; Dando I; Zoratti E; Scupoli MT; Beghelli S; Scarpa A; Fattal E; Arpicco S; Palmieri M Biochim Biophys Acta; 2013 May; 1828(5):1396-404. PubMed ID: 23384419 [TBL] [Abstract][Full Text] [Related]
6. Co-delivery of autophagy inhibitor and gemcitabine using a pH-activatable core-shell nanobomb inhibits pancreatic cancer progression and metastasis. Chen X; Tao Y; He M; Deng M; Guo R; Sheng Q; Wang X; Ren K; Li T; He X; Zang S; Zhang Z; Li M; He Q Theranostics; 2021; 11(18):8692-8705. PubMed ID: 34522207 [No Abstract] [Full Text] [Related]
7. A Liposomal Gemcitabine, FF-10832, Improves Plasma Stability, Tumor Targeting, and Antitumor Efficacy of Gemcitabine in Pancreatic Cancer Xenograft Models. Matsumoto T; Komori T; Yoshino Y; Ioroi T; Kitahashi T; Kitahara H; Ono K; Higuchi T; Sakabe M; Kori H; Kano M; Hori R; Kato Y; Hagiwara S Pharm Res; 2021 Jun; 38(6):1093-1106. PubMed ID: 33961188 [TBL] [Abstract][Full Text] [Related]
8. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: the Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine. Xu H; Li Y; Paxton JW; Wu Z Pharm Res; 2021 Jul; 38(7):1209-1219. PubMed ID: 34189639 [TBL] [Abstract][Full Text] [Related]
9. Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Chaudhary AK; Mondal G; Kumar V; Kattel K; Mahato RI Cancer Lett; 2017 Aug; 402():1-8. PubMed ID: 28536008 [TBL] [Abstract][Full Text] [Related]
10. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. Kim IY; Kang YS; Lee DS; Park HJ; Choi EK; Oh YK; Son HJ; Kim JS J Control Release; 2009 Nov; 140(1):55-60. PubMed ID: 19616596 [TBL] [Abstract][Full Text] [Related]
12. Cholesterol derivative-based liposomes for gemcitabine delivery: preparation, in vitro, and in vivo characterization. Li T; Chen L; Deng Y; Liu X; Zhao X; Cui Y; Shi J; Feng R; Song Y Drug Dev Ind Pharm; 2017 Dec; 43(12):2016-2025. PubMed ID: 28760000 [TBL] [Abstract][Full Text] [Related]
13. A Nanoparticle Carrier for Co-Delivery of Gemcitabine and Small Interfering RNA in Pancreatic Cancer Therapy. Li J; Chen Y; Zeng L; Lian G; Chen S; Li Y; Yang K; Huang K J Biomed Nanotechnol; 2016 Aug; 12(8):1654-66. PubMed ID: 29342344 [TBL] [Abstract][Full Text] [Related]
14. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Han NK; Shin DH; Kim JS; Weon KY; Jang CY; Kim JS Int J Nanomedicine; 2016; 11():1413-25. PubMed ID: 27103799 [TBL] [Abstract][Full Text] [Related]
15. Nanoformulation of Apolipoprotein E3-Tagged Liposomal Nanoparticles for the co-Delivery of KRAS-siRNA and Gemcitabine for Pancreatic Cancer Treatment. Wang F; Zhang Z Pharm Res; 2020 Nov; 37(12):247. PubMed ID: 33216236 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of gemcitabine in RGD-modified nanoliposomes improves breast cancer inhibitory activity. Cai W; Geng C; Jiang L; Sun J; Chen B; Zhou Y; Yang B; Lu H Pharm Dev Technol; 2020 Jun; 25(5):640-648. PubMed ID: 32028816 [TBL] [Abstract][Full Text] [Related]
17. The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Yu H; Song H; Xiao J; Chen H; Jin X; Lin X; Pan B; Ji W Biomed Pharmacother; 2017 Dec; 96():650-658. PubMed ID: 29035831 [TBL] [Abstract][Full Text] [Related]
18. Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. Tang Z; Feng W; Yang Y; Wang Q Drug Des Devel Ther; 2019; 13():3281-3290. PubMed ID: 31571830 [TBL] [Abstract][Full Text] [Related]
19. Development of Liposomal Gemcitabine with High Drug Loading Capacity. Tamam H; Park J; Gadalla HH; Masters AR; Abdel-Aleem JA; Abdelrahman SI; Abdelrahman AA; Lyle LT; Yeo Y Mol Pharm; 2019 Jul; 16(7):2858-2871. PubMed ID: 31136710 [TBL] [Abstract][Full Text] [Related]
20. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Zhao X; Li F; Li Y; Wang H; Ren H; Chen J; Nie G; Hao J Biomaterials; 2015 Apr; 46():13-25. PubMed ID: 25678112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]