These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39111511)
1. Nanoparticles prepared with biotin-esterified debranched starch as an oral carrier to improve the stability and antioxidant activity of resveratrol. Wang CC; Yang BQ; Feng R; Tao H; Xu BC; Zhang B Int J Biol Macromol; 2024 Oct; 278(Pt 1):134543. PubMed ID: 39111511 [TBL] [Abstract][Full Text] [Related]
2. Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Qin Y; Xue L; Hu Y; Qiu C; Jin Z; Xu X; Wang J Ultrason Sonochem; 2020 Sep; 66():105074. PubMed ID: 32224448 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonicated resveratrol loaded starch nanocapsules: Characterization, bioactivity and release behaviour under in-vitro digestion. Ahmad M; Gani A Carbohydr Polym; 2021 Jan; 251():117111. PubMed ID: 33142648 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. Fan Y; Zeng X; Yi J; Zhang Y Int J Biol Macromol; 2020 Jun; 152():189-198. PubMed ID: 32105693 [TBL] [Abstract][Full Text] [Related]
5. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Liu Q; Cai W; Zhen T; Ji N; Dai L; Xiong L; Sun Q Int J Biol Macromol; 2020 Oct; 161():481-491. PubMed ID: 32534085 [TBL] [Abstract][Full Text] [Related]
6. α-Lactalbumin and chitosan core-shell nanoparticles: resveratrol loading, protection, and antioxidant activity. Liu Y; Gao L; Yi J; Fan Y; Wu X; Zhang Y Food Funct; 2020 Feb; 11(2):1525-1536. PubMed ID: 31995080 [TBL] [Abstract][Full Text] [Related]
7. An investigation into structural properties and stability of debranched starch-lycopene inclusion complexes with different branching degrees. Gu T; Zhang X; Gong Y; Zhang T; Hu L; Yu Y; Deng C; Xiao Y; Zheng M; Zhou Y Int J Biol Macromol; 2023 Apr; 233():123641. PubMed ID: 36773868 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of agarose-sodium alginate hydrogel beads for the co-encapsulation of lycopene and resveratrol nanoemulsion. Li M; Li X; Ren H; Shao W; Wang C; Huang Y; Zhang S; Han Y; Zhang Y; Yin M; Zhang F; Cheng Y; Yang Y Int J Biol Macromol; 2024 Oct; 277(Pt 1):133753. PubMed ID: 39084974 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Xiong W; Ren C; Li J; Li B Food Funct; 2018 Jul; 9(7):3788-3797. PubMed ID: 29922792 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. Jia Y; Kong L; Zhang B; Fu X; Huang Q Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticles prepared by polysaccharides extracted from Biyang floral mushroom loaded with resveratrol: Characterization, bioactivity and release behavior under in vitro digestion. Liu K; Liu Y; Lu J; Liu X; Hao L; Yi J Food Chem; 2023 Nov; 426():136612. PubMed ID: 37348397 [TBL] [Abstract][Full Text] [Related]
12. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Gokce EH; Korkmaz E; Dellera E; Sandri G; Bonferoni MC; Ozer O Int J Nanomedicine; 2012; 7():1841-50. PubMed ID: 22605933 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Suktham K; Koobkokkruad T; Wutikhun T; Surassmo S Int J Pharm; 2018 Feb; 537(1-2):48-56. PubMed ID: 29229512 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of self-assembled folate-biotin-quaternized starch nanoparticles as co-carrier of doxorubicin and siRNA. Li L; Tao R; Song M; Zhang Y; Chen K; Wang H; Gong R J Biomater Appl; 2017 Nov; 32(5):587-597. PubMed ID: 29073804 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Cationic Modified Debranched Starch and Formation of Complex Nanoparticles with κ-Carrageenan and Low Methoxyl Pectin. Liu Q; Li M; Xiong L; Qiu L; Bian X; Sun C; Sun Q J Agric Food Chem; 2019 Mar; 67(10):2906-2915. PubMed ID: 30789728 [TBL] [Abstract][Full Text] [Related]
16. Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Wu PS; Li YS; Kuo YC; Tsai SJ; Lin CC Molecules; 2019 Feb; 24(3):. PubMed ID: 30743989 [TBL] [Abstract][Full Text] [Related]
17. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. Shao P; Wang P; Niu B; Kang J Int J Biol Macromol; 2018 Nov; 119():53-59. PubMed ID: 30036624 [TBL] [Abstract][Full Text] [Related]
18. Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. Ren N; Ma Z; Li X; Hu X Int J Biol Macromol; 2021 Mar; 173():293-306. PubMed ID: 33484801 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Biotin-Modified Galactosylated Chitosan Nanoparticles and Their Characteristics in Vitro and in Vivo. Cheng M; Ma D; Zhi K; Liu B; Zhu W Cell Physiol Biochem; 2018; 50(2):569-584. PubMed ID: 30308481 [TBL] [Abstract][Full Text] [Related]
20. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. Feng T; Hu Z; Wang K; Zhu X; Chen D; Zhuang H; Yao L; Song S; Wang H; Sun M Int J Biol Macromol; 2020 Oct; 161():746-754. PubMed ID: 32553966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]