These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39112610)

  • 1. Multi-area collision-free path planning and efficient task scheduling optimization for autonomous agricultural robots.
    Yang L; Li P; Wang T; Miao J; Tian J; Chen C; Tan J; Wang Z
    Sci Rep; 2024 Aug; 14(1):18347. PubMed ID: 39112610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization.
    Li P; Yang L
    Math Biosci Eng; 2023 Jan; 20(2):3528-3565. PubMed ID: 36899592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning.
    Lei T; Chintam P; Luo C; Liu L; Jan GE
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimized Probabilistic Roadmap Algorithm for Path Planning of Mobile Robots in Complex Environments with Narrow Channels.
    Qiao L; Luo X; Luo Q
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autonomous mobile robot path planning strategy using an enhanced slime mold algorithm.
    Zheng L; Hong C; Song H; Chen R
    Front Neurorobot; 2023; 17():1270860. PubMed ID: 37915952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic 3D Point-Cloud-Driven Autonomous Hierarchical Path Planning for Quadruped Robots.
    Zhang Q; Li R; Sun J; Wei L; Huang J; Tan Y
    Biomimetics (Basel); 2024 Apr; 9(5):. PubMed ID: 38786469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved A* Algorithm for Mobile Robots under Rough Terrain Based on Ground Trafficability Model and Ground Ruggedness Model.
    Liu Z; Guo S; Yu F; Hao J; Zhang P
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path planning for autonomous mobile robots using multi-objective evolutionary particle swarm optimization.
    Thammachantuek I; Ketcham M
    PLoS One; 2022; 17(8):e0271924. PubMed ID: 35984778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact and Heuristic Multi-Robot Dubins Coverage Path Planning for Known Environments.
    Li L; Shi D; Jin S; Yang S; Zhou C; Lian Y; Liu H
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple-Target Homotopic Quasi-Complete Path Planning Method for Mobile Robot Using a Piecewise Linear Approach.
    Diaz-Arango G; Vazquez-Leal H; Hernandez-Martinez L; Jimenez-Fernandez VM; Heredia-Jimenez A; Ambrosio RC; Huerta-Chua J; De Cos-Cholula H; Hernandez-Mendez S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm.
    Tian H; Mo Z; Ma C; Xiao J; Jia R; Lan Y; Zhang Y
    Front Plant Sci; 2023; 14():1101828. PubMed ID: 36818859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring a Novel Multiple-Query Resistive Grid-Based Planning Method Applied to High-DOF Robotic Manipulators.
    Huerta-Chua J; Diaz-Arango G; Vazquez-Leal H; Flores-Mendez J; Moreno-Moreno M; Ambrosio-Lazaro RC; Hernandez-Mejia C
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Cooperative Path Planning for Multi-robot Persistent Coverage with Obstacles and Coverage Period Constraints.
    Sun G; Zhou R; Di B; Dong Z; Wang Y
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Area-Based and Path-Based Heuristic Approaches for Multirobot Coverage Path Planning with Performance Analysis in Surveillance Systems.
    Gong J; Lee S
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Path Planning for Robot Using OP-PRM in Complex Dynamic Environment.
    Ye L; Chen J; Zhou Y
    Front Neurorobot; 2022; 16():910859. PubMed ID: 35756159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Coverage Path Planning for Mobile Disinfecting Robots Using Graph-Based Representation of Environment.
    Nasirian B; Mehrandezh M; Janabi-Sharifi F
    Front Robot AI; 2021; 8():624333. PubMed ID: 33791341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Collision-Free Homotopy Path Planning for Planar Robotic Arms.
    Velez-Lopez GC; Vazquez-Leal H; Hernandez-Martinez L; Sarmiento-Reyes A; Diaz-Arango G; Huerta-Chua J; Rico-Aniles HD; Jimenez-Fernandez VM
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LF-ACO: an effective formation path planning for multi-mobile robot.
    Yang L; Fu L; Li P; Mao J; Guo N; Du L
    Math Biosci Eng; 2022 Jan; 19(1):225-252. PubMed ID: 34902989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.