These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39113123)
21. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [TBL] [Abstract][Full Text] [Related]
22. Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT. Hirashima H; Nakamura M; Baillehache P; Fujimoto Y; Nakagawa S; Saruya Y; Kabasawa T; Mizowaki T Radiat Oncol; 2021 Jul; 16(1):135. PubMed ID: 34294090 [TBL] [Abstract][Full Text] [Related]
23. Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets. Clark B; Hardcastle N; Johnston LA; Korte J Med Phys; 2024 Jul; 51(7):4767-4777. PubMed ID: 38376454 [TBL] [Abstract][Full Text] [Related]
24. Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images. Wang Y; Lombardo E; Huang L; Avanzo M; Fanetti G; Franchin G; Zschaeck S; Weingärtner J; Belka C; Riboldi M; Kurz C; Landry G Radiat Oncol; 2024 Jan; 19(1):3. PubMed ID: 38191431 [TBL] [Abstract][Full Text] [Related]
25. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles. Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789 [TBL] [Abstract][Full Text] [Related]
26. Intraindividual comparison between Spohn S; Jaegle C; Fassbender TF; Sprave T; Gkika E; Nicolay NH; Bock M; Ruf J; Benndorf M; Gratzke C; Grosu AL; Zamboglou C Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2796-2803. PubMed ID: 32342192 [TBL] [Abstract][Full Text] [Related]
27. Comparison of Manual and Semi-Automatic [ Spohn SKB; Kramer M; Kiefer S; Bronsert P; Sigle A; Schultze-Seemann W; Jilg CA; Sprave T; Ceci L; Fassbender TF; Nicolay NH; Ruf J; Grosu AL; Zamboglou C Front Oncol; 2020; 10():600690. PubMed ID: 33365271 [TBL] [Abstract][Full Text] [Related]
28. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes. Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810 [TBL] [Abstract][Full Text] [Related]
29. A multi-label CNN model for the automatic detection and segmentation of gliomas using [ Rahimpour M; Boellaard R; Jentjens S; Deckers W; Goffin K; Koole M Eur J Nucl Med Mol Imaging; 2023 Jul; 50(8):2441-2452. PubMed ID: 36933075 [TBL] [Abstract][Full Text] [Related]
30. Validation of different PSMA-PET/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference. Zamboglou C; Fassbender TF; Steffan L; Schiller F; Fechter T; Carles M; Kiefer S; Rischke HC; Reichel K; Schmidt-Hegemann NS; Ilhan H; Chirindel AF; Nicolas G; Henkenberens C; Derlin T; Bronsert P; Mavroidis P; Chen RC; Meyer PT; Ruf J; Grosu AL Radiother Oncol; 2019 Dec; 141():208-213. PubMed ID: 31431386 [TBL] [Abstract][Full Text] [Related]
31. Deep learning-based whole-body characterization of prostate cancer lesions on [ Huang B; Yang Q; Li X; Wu Y; Liu Z; Pan Z; Zhong S; Song S; Zuo C Eur J Nucl Med Mol Imaging; 2024 Mar; 51(4):1173-1184. PubMed ID: 38049657 [TBL] [Abstract][Full Text] [Related]
32. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning. Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996 [TBL] [Abstract][Full Text] [Related]
34. Machine learning-based analysis of Khateri M; Babapour Mofrad F; Geramifar P; Jenabi E Phys Eng Sci Med; 2024 Jun; 47(2):741-753. PubMed ID: 38526647 [TBL] [Abstract][Full Text] [Related]
35. Benefits of automated gross tumor volume segmentation in head and neck cancer using multi-modality information. Bollen H; Willems S; Wegge M; Maes F; Nuyts S Radiother Oncol; 2023 May; 182():109574. PubMed ID: 36822358 [TBL] [Abstract][Full Text] [Related]
36. Accurate segmentation of head and neck radiotherapy CT scans with 3D CNNs: consistency is key. Henderson EGA; Vasquez Osorio EM; van Herk M; Brouwer CL; Steenbakkers RJHM; Green AF Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36893469 [No Abstract] [Full Text] [Related]
37. Combined whole-body dynamic and static PET/CT with low-dose [ Sachpekidis C; Pan L; Groezinger M; Strauss DS; Dimitrakopoulou-Strauss A Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):2137-2150. PubMed ID: 38286936 [TBL] [Abstract][Full Text] [Related]
38. MRI versus ⁶⁸Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer. Zamboglou C; Wieser G; Hennies S; Rempel I; Kirste S; Soschynski M; Rischke HC; Fechter T; Jilg CA; Langer M; Meyer PT; Bock M; Grosu AL Eur J Nucl Med Mol Imaging; 2016 May; 43(5):889-897. PubMed ID: 26592938 [TBL] [Abstract][Full Text] [Related]