These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39113771)
1. Behaviour of dissolved inorganic salts in the cooling water of a nuclear power plant open recirculation system and formation of water discharge. Biedunkova O; Kuznietsov P; Gandziura V R Soc Open Sci; 2024 Aug; 11(8):240492. PubMed ID: 39113771 [TBL] [Abstract][Full Text] [Related]
2. IMPACT OF THE RIVNE NPP ACTIVITY ON NATURAL AND SOCIAL ENVIRONMENT OF THE CONTROL AREA. Prylypko VA; Morozova MM; Bondarenko IV; Petrychenko OO; Romanenko OM; Tuz KK; Ozerova YY Probl Radiac Med Radiobiol; 2019 Dec; 24():131-149. PubMed ID: 31841463 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the scaling and corrosive potential of the cooling water supply system of a nuclear power plant based on the physicochemical control dataset. Kuznietsov P Data Brief; 2024 Jun; 54():110347. PubMed ID: 38586140 [TBL] [Abstract][Full Text] [Related]
4. Impact of coastal power plant cooling system on planktonic diversity of a polluted creek system. Prince Prakash Jebakumar J; Nandhagopal G; Rajan Babu B; Ragumaran S; Ravichandran V Mar Pollut Bull; 2018 Aug; 133():378-391. PubMed ID: 30041327 [TBL] [Abstract][Full Text] [Related]
5. Application of Chemical Crystallization Circulating Pellet Fluidized Beds for Softening and Saving Circulating Water in Thermal Power Plants. Hu R; Huang T; Wang T; Wang H; Long X Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752321 [TBL] [Abstract][Full Text] [Related]
6. SACTI model in prediction and assessment of large scale natural draft cooling tower environmental impact of nuclear power plant. Wang X; Liu S; Cao P; Song J; Wang C; Xu S; Zhu S Sci Rep; 2023 Jul; 13(1):11171. PubMed ID: 37430100 [TBL] [Abstract][Full Text] [Related]
7. Dissolved carbon in effluent of wastewater treatment plants and its potential impacts in the receiving karst river. Cao X; Xu YJ; Long G; Wu P; Liu Z Environ Res; 2024 Jun; 251(Pt 1):118570. PubMed ID: 38417655 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of temperature rise in global nuclear power plant thermal discharge from 2013 to 2022. Wang L; Li G; Guo X; Zhu J; Sui C; Dong X J Environ Manage; 2024 Aug; 366():121844. PubMed ID: 39025007 [TBL] [Abstract][Full Text] [Related]
9. Determination of chemical forms of Svetlik I; Fejgl M; Povinec PP; Kořínková T; Tomášková L; Pospíchal J; Kurfiřt M; Striegler R; Kaufmanová M J Environ Radioact; 2017 Oct; 177():256-260. PubMed ID: 28719853 [TBL] [Abstract][Full Text] [Related]
10. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic. Hanslík E; Marešová D; Juranová E; Sedlářová B J Environ Manage; 2017 Dec; 203(Pt 3):1137-1142. PubMed ID: 28693967 [TBL] [Abstract][Full Text] [Related]
11. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine. Chien SH; Chowdhury I; Hsieh MK; Li H; Dzombak DA; Vidic RD Water Res; 2012 Dec; 46(19):6508-18. PubMed ID: 23063442 [TBL] [Abstract][Full Text] [Related]
12. Detecting the Ecological Effects of Environmental Impacts: A Case Study of Kelp Forest Invertebrates. Schroeter SC; Dixon JD; Kastendiek J; Smith RO; Bence JR Ecol Appl; 1993 May; 3(2):331-350. PubMed ID: 27759312 [TBL] [Abstract][Full Text] [Related]
13. Impacts of direct release and river discharge on oceanic Tsumune D; Tsubono T; Misumi K; Tateda Y; Toyoda Y; Onda Y; Aoyama M J Environ Radioact; 2020 Apr; 214-215():106173. PubMed ID: 32063291 [TBL] [Abstract][Full Text] [Related]
14. Occurrence and temporal variations of TMDD in the river Rhine, Germany. Guedez AA; Frömmel S; Diehl P; Püttmann W Environ Sci Pollut Res Int; 2010 Feb; 17(2):321-30. PubMed ID: 19526261 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variation of nutrient loads in treated wastewater effluents and receiving water bodies in Sedibeng and Soshanguve, South Africa. Teklehaimanot GZ; Kamika I; Coetzee MA; Momba MN Environ Monit Assess; 2015 Sep; 187(9):595. PubMed ID: 26311265 [TBL] [Abstract][Full Text] [Related]
16. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Lee PW; Tseng LC; Hwang JS Mar Pollut Bull; 2018 Nov; 136():114-124. PubMed ID: 30509792 [TBL] [Abstract][Full Text] [Related]
17. [Permissible pollution bearing capacity model of water function zone based on the perspective of municipal wastewater discharge and its application.]. Qin L; Song XY; Chao ZL; Feng XH; Xia L Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):3051-3057. PubMed ID: 30411582 [TBL] [Abstract][Full Text] [Related]
18. Effect of Wastewater Discharge From Coffee Processing Plant on River Water Quality, Sidama Region, South Ethiopia. Genanaw W; Kanno GG; Derese D; Aregu MB Environ Health Insights; 2021; 15():11786302211061047. PubMed ID: 35173444 [TBL] [Abstract][Full Text] [Related]
19. Phytoplankton community structural reshaping as response to the thermal effect of cooling water discharged from power plant. Xu D; Wang H; Han D; Chen A; Niu Y Environ Pollut; 2021 Sep; 285():117517. PubMed ID: 34380219 [TBL] [Abstract][Full Text] [Related]
20. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic). Hanslík E; Ivanovová D; Juranová E; Simonek P; Jedináková-Krízová V J Environ Radioact; 2009 Feb; 100(2):131-8. PubMed ID: 19070946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]