These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39114140)
1. Simulated HRTEM images of nanoparticles to train a neural network to classify nanoparticles for crystallinity. Gumbiowski N; Barthel J; Loza K; Heggen M; Epple M Nanoscale Adv; 2024 Aug; 6(16):4196-4206. PubMed ID: 39114140 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning Pipeline for Segmentation and Defect Identification from High-Resolution Transmission Electron Microscopy Data. Groschner CK; Choi C; Scott MC Microsc Microanal; 2021 May; ():1-8. PubMed ID: 33952372 [TBL] [Abstract][Full Text] [Related]
3. End-to-end machine learning for experimental physics: using simulated data to train a neural network for object detection in video microscopy. Minor EN; Howard SD; Green AAS; Glaser MA; Park CS; Clark NA Soft Matter; 2020 Feb; 16(7):1751-1759. PubMed ID: 31907505 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-assisted analysis of HRTEM images of crystalline nanoparticles. Zhu X; Mao Y; Liu J; Chen Y; Chen C; Li Y; Huang X; Gu N Nanoscale; 2023 Sep; 15(35):14496-14504. PubMed ID: 37609765 [TBL] [Abstract][Full Text] [Related]
5. Precise Size Determination of Supported Catalyst Nanoparticles via Generative AI and Scanning Transmission Electron Microscopy. Eliasson H; Lothian A; Surin I; Mitchell S; Pérez-Ramírez J; Erni R Small Methods; 2024 Oct; ():e2401108. PubMed ID: 39359026 [TBL] [Abstract][Full Text] [Related]
6. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
7. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images. Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253 [TBL] [Abstract][Full Text] [Related]
9. Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning. Gumbiowski N; Loza K; Heggen M; Epple M Nanoscale Adv; 2023 Apr; 5(8):2318-2326. PubMed ID: 37056630 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticle Detection on SEM Images Using a Neural Network and Semi-Synthetic Training Data. López Gutiérrez JD; Abundez Barrera IM; Torres Gómez N Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683674 [TBL] [Abstract][Full Text] [Related]
11. Synthetic Image Rendering Solves Annotation Problem in Deep Learning Nanoparticle Segmentation. Mill L; Wolff D; Gerrits N; Philipp P; Kling L; Vollnhals F; Ignatenko A; Jaremenko C; Huang Y; De Castro O; Audinot JN; Nelissen I; Wirtz T; Maier A; Christiansen S Small Methods; 2021 Jul; 5(7):e2100223. PubMed ID: 34927995 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learning. Leth Larsen MH; Dahl F; Hansen LP; Barton B; Kisielowski C; Helveg S; Winther O; Hansen TW; Schiøtz J Ultramicroscopy; 2023 Jan; 243():113641. PubMed ID: 36401890 [TBL] [Abstract][Full Text] [Related]
13. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
14. Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy. Bals J; Epple M RSC Adv; 2023 Jan; 13(5):2795-2802. PubMed ID: 36756420 [TBL] [Abstract][Full Text] [Related]
15. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
16. Efficientand Robust Automated Segmentation of Nanoparticles and Aggregates from Transmission Electron Microscopy Images with Highly Complex Backgrounds. Zhou L; Wen H; Kuschnerus IC; Chang SLY Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057846 [TBL] [Abstract][Full Text] [Related]
17. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R Elife; 2020 Oct; 9():. PubMed ID: 33074102 [TBL] [Abstract][Full Text] [Related]
18. Generalization Across Experimental Parameters in Neural Network Analysis of High-Resolution Transmission Electron Microscopy Datasets. Sytwu K; Rangel DaCosta L; Scott MC Microsc Microanal; 2024 Mar; 30(1):85-95. PubMed ID: 38285915 [TBL] [Abstract][Full Text] [Related]