These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 39114591)

  • 1. Yes or no? A study of ErrPs in the "guess what I am thinking" paradigm with stimuli of different visual content.
    Berkmush-Antipova A; Syrov N; Yakovlev L; Miroshnikov A; Golovanov F; Shusharina N; Kaplan A
    Front Psychol; 2024; 15():1394496. PubMed ID: 39114591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller.
    Bevilacqua M; Perdikis S; Millan JDR
    IEEE Open J Eng Med Biol; 2020; 1():17-22. PubMed ID: 35402943
    [No Abstract]   [Full Text] [Related]  

  • 5. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity.
    Spüler M; Niethammer C
    Front Hum Neurosci; 2015; 9():155. PubMed ID: 25859204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in Characteristics of Error-Related Potentials Between Individuals With Spinal Cord Injury and Age- and Sex-Matched Able-Bodied Controls.
    Keyl P; Schneiders M; Schuld C; Franz S; Hommelsen M; Weidner N; Rupp R
    Front Neurol; 2018; 9():1192. PubMed ID: 30766510
    [No Abstract]   [Full Text] [Related]  

  • 7. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation.
    Usama N; Kunz Leerskov K; Niazi IK; Dremstrup K; Jochumsen M
    Med Biol Eng Comput; 2020 Nov; 58(11):2699-2710. PubMed ID: 32862336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SKDCPM algorithm can improve the single-trial decoding performance of very similar error-related potentials
    Meng J; Wang H; Sun J; Zhao Y; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the Classification of Error-Related Potentials using Riemannian Geometry.
    Tang Y; Zhang JJ; Corballis PM; Hallum LE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5905-5908. PubMed ID: 34892463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG error-related potentials encode magnitude of errors and individual perceptual thresholds.
    Iwane F; Sobolewski A; Chavarriaga R; Millán JDR
    iScience; 2023 Sep; 26(9):107524. PubMed ID: 37636067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generic error-related potential classifier based on simulated subjects.
    Xavier Fidêncio A; Klaes C; Iossifidis I
    Front Hum Neurosci; 2024; 18():1390714. PubMed ID: 39086374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of tactile-based error-related potentials (ErrPs) in human-robot interaction.
    Kim SK; Kirchner EA
    Front Neurorobot; 2023; 17():1297990. PubMed ID: 38162893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of error-related potentials evoked during stroke rehabilitation training.
    Kumar A; Pirogova E; Mahmoud SS; Fang Q
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34384052
    [No Abstract]   [Full Text] [Related]  

  • 14. Invariability of EEG error-related potentials during continuous feedback protocols elicited by erroneous actions at predicted or unpredicted states.
    Iwane F; Iturrate I; Chavarriaga R; Millán JDR
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33882461
    [No Abstract]   [Full Text] [Related]  

  • 15. Online asynchronous decoding of error-related potentials during the continuous control of a robot.
    Lopes-Dias C; Sburlea AI; Müller-Putz GR
    Sci Rep; 2019 Nov; 9(1):17596. PubMed ID: 31772232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders.
    Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535
    [No Abstract]   [Full Text] [Related]  

  • 17. Single trial detection of error-related potentials in brain-machine interfaces: a survey and comparison of methods.
    Yasemin M; Cruz A; Nunes UJ; Pires G
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36595316
    [No Abstract]   [Full Text] [Related]  

  • 18. Prediction Deviants with Varying Degrees Induce Separable Error-related EEG Features.
    Meng J; Liu J; Wang H; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6671-6674. PubMed ID: 34892638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of static and dynamic visual stimulations on error-evoked brain responses.
    Xu R; Wang Y; Wang N; Shi X; Meng L; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2877-2880. PubMed ID: 33018607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep neural network and transfer learning combined method for cross-task classification of error-related potentials.
    Ren G; Kumar A; Mahmoud SS; Fang Q
    Front Hum Neurosci; 2024; 18():1394107. PubMed ID: 38933146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.