These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39115033)

  • 1. Surface Acidic Species-Driven Reductive Amination of Furfural with Ru/T-ZrO
    Saini K; Arulananda Babu S; Saravanamurugan S
    ChemSusChem; 2024 Aug; ():e202401277. PubMed ID: 39115033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites.
    Saini MK; Kumar S; Li H; Babu SA; Saravanamurugan S
    ChemSusChem; 2022 Apr; 15(7):e202200107. PubMed ID: 35171526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-Rich Ru Supported on N-Doped Coffee Biochar for Selective Reductive Amination of Furfural to Furfurylamine.
    Gong H; Wei L; Li Q; Zhang J; Wang F; Ren J; Shi XL
    Langmuir; 2024 Apr; 40(17):8950-8960. PubMed ID: 38623603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.
    Liang G; Wang A; Li L; Xu G; Yan N; Zhang T
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3050-3054. PubMed ID: 28156045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-Oriented ZrO
    Liu S; Wang H; Wei Y; Zhang R; Royer S
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22240-22254. PubMed ID: 31124652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds.
    Chandra D; Inoue Y; Sasase M; Kitano M; Bhaumik A; Kamata K; Hosono H; Hara M
    Chem Sci; 2018 Jul; 9(27):5949-5956. PubMed ID: 30079209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene.
    Peng Z; Liu X; Li S; Li Z; Li B; Liu Z; Liu S
    Sci Rep; 2017 Jan; 7():39847. PubMed ID: 28057914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Study Addressing the Challenge of Efficient Electrocatalytic Biomass Upgrading of 5-(Hydroxymethyl)Furfural (HMF) with a CH
    Xiao Y; Shen C; Xiong Z; Ding Y; Liu L; Zhang W; Wu YA
    Small; 2023 Oct; 19(42):e2302271. PubMed ID: 37328440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of W-modified CeO
    Li C; Han Z; Hu Y; Liu T; Pan X
    RSC Adv; 2022 Sep; 12(42):27309-27320. PubMed ID: 36276006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO
    Han Z; Li X; Wang X; Gao Y; Yang S; Song L; Dong J; Pan X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2718-2729. PubMed ID: 34785048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds.
    Komanoya T; Kinemura T; Kita Y; Kamata K; Hara M
    J Am Chem Soc; 2017 Aug; 139(33):11493-11499. PubMed ID: 28759206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations.
    Fasano V; Ingleson MJ
    Chemistry; 2017 Feb; 23(9):2217-2224. PubMed ID: 27977048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of Ru and ZrO
    Xue F; Wang F; Liao M; Liu M; Hong Q; Li Z; Xia C; Wang J
    RSC Adv; 2024 Apr; 14(17):11914-11920. PubMed ID: 38623300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on Mo/ZrO2-SiO2(Al2O3) catalysts.
    Damyanova S; Centeno MA; Petrov L; Grange P
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Oct; 57(12):2495-501. PubMed ID: 11767843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO
    Zhu Z; Yang L; Ke C; Fan G; Yang L; Li F
    Dalton Trans; 2021 Feb; 50(7):2616-2626. PubMed ID: 33522543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the catalytic wet air oxidation of p-hydroxybenzoic acid on a fresh ruthenium catalyst supported by different oxides.
    Hammedi T; Bensouilah R; Ouakouak A; Llorca J; Cabello FM; Ksibi Z
    Heliyon; 2023 Oct; 9(10):e20875. PubMed ID: 37867862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting Amination of Furfural to Furfurylamine by Metal-Support Interactions on Pd/MoO
    Wang Z; Zheng Y; Feng J; Zhang W; Gao Q
    Chemistry; 2023 Aug; 29(47):e202300947. PubMed ID: 37309246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface chemistry of pure tetragonal ZrO
    Köck EM; Kogler M; Götsch T; Schlicker L; Bekheet MF; Doran A; Gurlo A; Klötzer B; Petermüller B; Schildhammer D; Yigit N; Penner S
    Dalton Trans; 2017 Apr; 46(14):4554-4570. PubMed ID: 28317954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.
    Farrag M
    Sci Rep; 2023 Jun; 13(1):10123. PubMed ID: 37349346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.