These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39115033)

  • 21. Reductive Amination of Furanic Aldehydes in Aqueous Solution over Versatile Ni
    Yuan H; Li JP; Su F; Yan Z; Kusema BT; Streiff S; Huang Y; Pera-Titus M; Shi F
    ACS Omega; 2019 Feb; 4(2):2510-2516. PubMed ID: 31459489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly selective and robust single-atom catalyst Ru
    Qi H; Yang J; Liu F; Zhang L; Yang J; Liu X; Li L; Su Y; Liu Y; Hao R; Wang A; Zhang T
    Nat Commun; 2021 Jun; 12(1):3295. PubMed ID: 34078894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase effects in zirconia catalysed glucose conversion to 5-hydroxy methylfurfural.
    Liu Y; Forster L; Mavridis A; Merenda A; Ahmed M; D'Agostino C; Konarova M; Seeber A; Della Gaspera E; Lee AF; Wilson K
    ChemSusChem; 2024 Oct; ():e202401494. PubMed ID: 39375154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine.
    Podolean I; Dogaru M; Guzo NC; Petcuta OA; Jacobsen EE; Nicolaev A; Cojocaru B; Tudorache M; Parvulescu VI; Coman SM
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ruthenium nanoparticle catalyzed selective reductive amination of imine with aldehyde to access tertiary amines.
    Li B; Liu S; Lin Q; Shao Y; Peng S; Li Y
    Chem Commun (Camb); 2018 Aug; 54(66):9214-9217. PubMed ID: 30066006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting the Formation of Brønsted Acids on Flame-made WO
    Zhang W; Wang Z; Marianov A; Zhu Y; Wang L; Castignolles P; Gaborieau M; Baiker A; Huang J; Jiang Y
    ChemSusChem; 2024 Jul; ():e202400128. PubMed ID: 39045636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce-Mn-Ru/TiO
    Ren Z; Zhang H; Wang G; Pan Y; Yu Z; Long H
    ACS Omega; 2020 Dec; 5(51):33357-33371. PubMed ID: 33403298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Catalytic Advances on the Sustainable Production of Primary Furanic Amines from the One-Pot Reductive Amination of 5-Hydroxymethylfurfural.
    Truong CC; Mishra DK; Suh YW
    ChemSusChem; 2023 Jan; 16(1):e202201846. PubMed ID: 36354122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Dispersed ZnO Sites in a ZnO/ZrO2 Catalyst Promote Carbon Dioxide-to-Methanol Conversion.
    Zhang X; Yu X; Mendes RG; Matvija P; Melcherts AEM; Sun C; Ye X; Weckhuysen BM; Monai M
    Angew Chem Int Ed Engl; 2024 Oct; ():e202416899. PubMed ID: 39377208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Upcycling of Polyethylene Terephthalate towards High-valued Oxygenated Chemical Methyl p-Methyl Benzoate using a Cu/ZrO
    Cheng J; Xie J; Xi Y; Wu X; Zhang R; Mao Z; Yang H; Li Z; Li C
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202319896. PubMed ID: 38197522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ambient-Temperature Reductive Amination of 5-Hydroxymethylfurfural Over Al
    Hu Q; Jiang S; Wu Y; Xu H; Li G; Zhou Y; Wang J
    ChemSusChem; 2022 Jul; 15(13):e202200192. PubMed ID: 35233939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.
    Panagiotopoulou P; Martin N; Vlachos DG
    ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen Vacancy-Induced Metal-Support Interactions in AuPd/ZrO
    Chen Y; Sun L; Li Y; Cao Y; Guan W; Pan J; Zhang Z; Zhang Y
    Inorg Chem; 2023 Sep; 62(37):15277-15292. PubMed ID: 37656824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines.
    Senthamarai T; Murugesan K; Schneidewind J; Kalevaru NV; Baumann W; Neumann H; Kamer PCJ; Beller M; Jagadeesh RV
    Nat Commun; 2018 Oct; 9(1):4123. PubMed ID: 30297832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural.
    Fovanna T; Campisi S; Villa A; Kambolis A; Peng G; Rentsch D; Kröcher O; Nachtegaal M; Ferri D
    RSC Adv; 2020 Mar; 10(19):11507-11516. PubMed ID: 35495338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Denitration mechanism of monoclinic-phase nano zirconium oxide-based catalysts].
    Ye F; Liu R; Guan H; Gong XJ; Ji LC
    Huan Jing Ke Xue; 2015 Mar; 36(3):1092-7. PubMed ID: 25929081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Pichler CM; Al-Shaal MG; Gu D; Joshi H; Ciptonugroho W; Schüth F
    ChemSusChem; 2018 Jul; 11(13):2083-2090. PubMed ID: 29761659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly active Ru/TiO
    Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.