These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39115403)

  • 1. Design of an fNIRS-EEG hybrid terminal for wearable BCI systems.
    Jeong E; Seo M; Kim KS
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39115403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Integrated Wearable Patch for Brain EEG-fNIRS Monitoring.
    Li B; Li M; Xia J; Jin H; Dong S; Luo J
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGANet: fNIRS-Guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces.
    Kwak Y; Song WJ; Kim SE
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():329-339. PubMed ID: 35130163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable, Integrated EEG-fNIRS Technologies: A Review.
    Uchitel J; Vidal-Rosas EE; Cooper RJ; Zhao H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation.
    Hasan MAH; Khan MU; Mishra D
    Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features.
    Li R; Potter T; Huang W; Zhang Y
    Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
    Mughal NE; Khan MJ; Khalil K; Javed K; Sajid H; Naseer N; Ghafoor U; Hong KS
    Front Neurorobot; 2022; 16():873239. PubMed ID: 36119719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring.
    Kassab A; Le Lan J; Tremblay J; Vannasing P; Dehbozorgi M; Pouliot P; Gallagher A; Lesage F; Sawan M; Nguyen DK
    Hum Brain Mapp; 2018 Jan; 39(1):7-23. PubMed ID: 29058341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossing time windows optimization based on mutual information for hybrid BCI.
    Meng M; Dai L; She Q; Ma Y; Kong W
    Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications.
    Ali MU; Zafar A; Kallu KD; Masood H; Mannan MMN; Ibrahim MM; Kim S; Khan MA
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3361-3370. PubMed ID: 37436864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-aware Multimodal Auditory BCI Classification through Graph Neural Networks.
    Kumar C; Rahimi N; Gonjari R; McLinden J; Hosni SI; Shahriari Y; Shao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating EEG and fNIRS Patterns to Evaluate Cortical Excitability and MI-BCI Performance During Motor Training.
    Wang Z; Yang L; Zhou Y; Chen L; Gu B; Liu S; Xu M; He F; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2872-2882. PubMed ID: 37262121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.