These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39115637)
21. A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination. AlOtaibi B; Fan S; Vanka S; Kibria MG; Mi Z Nano Lett; 2015 Oct; 15(10):6821-8. PubMed ID: 26360182 [TBL] [Abstract][Full Text] [Related]
22. Bifunctional photoelectrochemical process for humic acid degradation and hydrogen production using multi-layered p-type Cu Peerakiatkhajohn P; Yun JH; Butburee T; Chen H; Thaweesak S; Lyu M; Wang S; Wang L J Hazard Mater; 2021 Jan; 402():123533. PubMed ID: 32758999 [TBL] [Abstract][Full Text] [Related]
23. Efficient Photoelectrochemical Hydrogen Generation Based on Core Size Effect of Heterostructured Quantum Dots. Wang K; Tao Y; Tang Z; Xu X; Benetti D; Vidal F; Zhao H; Rosei F; Sun X Small; 2024 Apr; 20(16):e2306453. PubMed ID: 38032174 [TBL] [Abstract][Full Text] [Related]
24. Simple Fabrication of SnO Zhang Y; Lin Q; Tong N; Zhang Z; Zhuang H; Zhang X; Ying W; Zhang H; Wang X Chemphyschem; 2018 Oct; 19(20):2717-2723. PubMed ID: 30088324 [TBL] [Abstract][Full Text] [Related]
25. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Ding C; Qin W; Wang N; Liu G; Wang Z; Yan P; Shi J; Li C Phys Chem Chem Phys; 2014 Aug; 16(29):15608-14. PubMed ID: 24956231 [TBL] [Abstract][Full Text] [Related]
26. Photoelectrochemical performance of a nanostructured BiVO Sitaaraman SR; Grace AN; Zhu J; Sellappan R Nanoscale Adv; 2024 Apr; 6(9):2407-2418. PubMed ID: 38694471 [TBL] [Abstract][Full Text] [Related]
27. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution. Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031 [TBL] [Abstract][Full Text] [Related]
28. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production. Shi L; Benetti D; Li F; Wei Q; Rosei F Small; 2022 Jun; 18(24):e2201815. PubMed ID: 35521950 [TBL] [Abstract][Full Text] [Related]
29. PbS Quantum Dots-Decorated BiVO Seo JW; Ha SB; Song IC; Kim JY Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903678 [TBL] [Abstract][Full Text] [Related]
30. Constructing Sequential Type II Heterojunction CQDs/Bi Pan Y; Dong Z; Qin D; Liu B; Cui L; Han S; Lin H ACS Appl Mater Interfaces; 2024 Apr; 16(13):16062-16074. PubMed ID: 38526168 [TBL] [Abstract][Full Text] [Related]
31. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
32. Investigation of the Solar Hydrogen Sensitivity of GeSe Thin Film Photoelectrode with Photoelectrochemical Environment. Ni H; Fang Y; Hu Y; Xiao G; Wu X; Jiang F ACS Appl Mater Interfaces; 2023 Oct; 15(40):46861-46871. PubMed ID: 37769166 [TBL] [Abstract][Full Text] [Related]
33. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale. Wang W; Radmilovic A; Choi KS; Galli G Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961 [TBL] [Abstract][Full Text] [Related]
34. A molecular tandem cell for efficient solar water splitting. Wang D; Hu J; Sherman BD; Sheridan MV; Yan L; Dares CJ; Zhu Y; Li F; Huang Q; You W; Meyer TJ Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13256-13260. PubMed ID: 32482883 [TBL] [Abstract][Full Text] [Related]
35. Photoelectrochemical performance of a spin coated TiO Sitaaraman SR; Nirmala Grace A; Sellappan R RSC Adv; 2022 Oct; 12(48):31380-31391. PubMed ID: 36349021 [TBL] [Abstract][Full Text] [Related]
36. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications. Zhao H; Liu J; Vidal F; Vomiero A; Rosei F Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225 [TBL] [Abstract][Full Text] [Related]
37. Photoelectrochemical Performance of Quantum dot-Sensitized TiO Zhou Q; Zhou J; Zeng M; Wang G; Chen Y; Lin S Nanoscale Res Lett; 2017 Dec; 12(1):261. PubMed ID: 28395481 [TBL] [Abstract][Full Text] [Related]
38. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes. Al-Saeedi SI Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241670 [TBL] [Abstract][Full Text] [Related]
39. Manipulating the Optoelectronic Properties of Quasi-type II CuInS Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789 [TBL] [Abstract][Full Text] [Related]
40. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]