These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39116387)
1. Suppressing Charge Extraction Loss in Quantum Dot Infrared Photovoltaics by Optimizing the Charge Transport Layer. Liu S; Wang M; Luo T; Wei A; Li MY; Lu H; Wen X J Phys Chem Lett; 2024 Aug; 15(33):8427-8433. PubMed ID: 39116387 [TBL] [Abstract][Full Text] [Related]
2. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells. Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767 [TBL] [Abstract][Full Text] [Related]
3. Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Li M; Chen S; Zhao X; Xiong K; Wang B; Shah UA; Gao L; Lan X; Zhang J; Hsu HY; Tang J; Song H Small; 2022 Jan; 18(1):e2105495. PubMed ID: 34859592 [TBL] [Abstract][Full Text] [Related]
4. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells. Ding C; Zhang Y; Liu F; Kitabatake Y; Hayase S; Toyoda T; Wang R; Yoshino K; Minemoto T; Shen Q Nanoscale Horiz; 2018 Jul; 3(4):417-429. PubMed ID: 32254129 [TBL] [Abstract][Full Text] [Related]
5. Optimizing Energy Levels and Improving Film Compactness in PbS Quantum Dot Solar Cells by Silver Doping. Li J; Zhang X; Liu Z; Wu H; Wang A; Luo Z; Wang J; Dong W; Wang C; Wen S; Dong Q; Yu WW; Zheng W Small; 2024 Jul; 20(29):e2311461. PubMed ID: 38386310 [TBL] [Abstract][Full Text] [Related]
6. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. Yang Y; Rao Z; Xu Q; Liang Y; Yang L J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408 [TBL] [Abstract][Full Text] [Related]
7. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
8. Diluted-CdS Quantum Dot-Assisted SnO Lv Z; He L; Jiang H; Ma X; Wang F; Fan L; Wei M; Yang J; Yang L; Yang N ACS Appl Mater Interfaces; 2021 Apr; 13(14):16326-16335. PubMed ID: 33787224 [TBL] [Abstract][Full Text] [Related]
9. Colloidal PbS quantum dot solar cells with high fill factor. Zhao N; Osedach TP; Chang LY; Geyer SM; Wanger D; Binda MT; Arango AC; Bawendi MG; Bulovic V ACS Nano; 2010 Jul; 4(7):3743-52. PubMed ID: 20590129 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the Potential of Colloidal Quantum Dot/Organic Hybrid Solar Cells: Band Tunable Interfacial Layer Approach. Lee J; Kim B; Kim C; Lee MH; Kozakci I; Cho S; Kim B; Lee SY; Kim J; Oh J; Lee JY ACS Appl Mater Interfaces; 2023 Aug; 15(33):39408-39416. PubMed ID: 37555937 [TBL] [Abstract][Full Text] [Related]
11. Significant enhancement in quantum-dot light emitting device stability Chung DS; Davidson-Hall T; Yu H; Samaeifar F; Chun P; Lyu Q; Cotella G; Aziz H Nanoscale Adv; 2021 Oct; 3(20):5900-5907. PubMed ID: 36132666 [TBL] [Abstract][Full Text] [Related]
12. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals. Zhang X; Santra PK; Tian L; Johansson MB; Rensmo H; Johansson EMJ ACS Nano; 2017 Aug; 11(8):8478-8487. PubMed ID: 28763616 [TBL] [Abstract][Full Text] [Related]
13. Double Metal Oxide Electron Transport Layers for Colloidal Quantum Dot Light-Emitting Diodes. Park M; Roh J; Lim J; Lee H; Lee D Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290391 [TBL] [Abstract][Full Text] [Related]
14. Stepping toward Portable Optoelectronics with SnO Kiani MS; Parkhomenko HP; Mangrulkar M; Aigarayeva S; Akhanuly A; Shalenov EO; Ng A; Jumabekov AN ACS Omega; 2023 Jun; 8(23):21212-21222. PubMed ID: 37323420 [TBL] [Abstract][Full Text] [Related]
15. Stable PbS colloidal quantum dot inks enable blade-coating infrared solar cells. Zhao X; Li M; Ma T; Yan J; Khalaf GMG; Chen C; Hsu HY; Song H; Tang J Front Optoelectron; 2023 Oct; 16(1):27. PubMed ID: 37882898 [TBL] [Abstract][Full Text] [Related]
16. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
17. Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer. Yang X; Hu L; Deng H; Qiao K; Hu C; Liu Z; Yuan S; Khan J; Li D; Tang J; Song H; Cheng C Nanomicro Lett; 2017; 9(2):24. PubMed ID: 30460319 [TBL] [Abstract][Full Text] [Related]
18. Revealing oxygen effect on efficiency and stability of quantum dot photovoltaics. Chen X; Li H; Wang L; Wang Z; Liu S; Li G; Wang C; Li X; Zhu H; Wang Y; Zhang X; Liu Y J Colloid Interface Sci; 2024 Dec; 676():417-424. PubMed ID: 39033676 [TBL] [Abstract][Full Text] [Related]
19. Minority Carrier Transport in Lead Sulfide Quantum Dot Photovoltaics. Rekemeyer PH; Chuang CM; Bawendi MG; Gradečak S Nano Lett; 2017 Oct; 17(10):6221-6227. PubMed ID: 28895741 [TBL] [Abstract][Full Text] [Related]
20. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence. Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]