These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39116387)
21. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics. Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377 [TBL] [Abstract][Full Text] [Related]
22. Enhanced Luminance of CdSe/ZnS Quantum Dots Light-Emitting Diodes Using ZnO-Oleic Acid/ZnO Quantum Dots Double Electron Transport Layer. Lee DY; Kim HH; Noh JH; Lim KY; Park D; Lee IH; Choi WK Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745377 [TBL] [Abstract][Full Text] [Related]
23. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell. Tulsani SR; Rath AK J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563 [TBL] [Abstract][Full Text] [Related]
24. 2D-MoS Tulsani SR; Rath AK; Late DJ Nanoscale Adv; 2019 Apr; 1(4):1387-1394. PubMed ID: 36132588 [TBL] [Abstract][Full Text] [Related]
25. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells. Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431 [TBL] [Abstract][Full Text] [Related]
26. Open-Shell Diradical-Sensitized Electron Transport Layer for High-Performance Colloidal Quantum Dot Solar Cells. Fang S; Huang J; Tao R; Wei Q; Ding X; Yajima S; Chen Z; Zhu W; Liu C; Li Y; Yin N; Song L; Liu Y; Shi G; Wu H; Gao Y; Wen X; Chen Q; Shen Q; Li Y; Liu Z; Li Y; Ma W Adv Mater; 2023 May; 35(21):e2212184. PubMed ID: 36870078 [TBL] [Abstract][Full Text] [Related]
27. Role of the ZnO electron transport layer in PbS colloidal quantum dot solar cell yield. Chiu A; Lu C; Kachman DE; Rong E; Chintapalli SM; Lin Y; Khurgin D; Thon SM Nanoscale; 2024 May; 16(17):8273-8285. PubMed ID: 38592692 [TBL] [Abstract][Full Text] [Related]
28. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
29. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. Cao S; Zheng J; Zhao J; Yang Z; Li C; Guan X; Yang W; Shang M; Wu T ACS Appl Mater Interfaces; 2017 May; 9(18):15605-15614. PubMed ID: 28421740 [TBL] [Abstract][Full Text] [Related]
30. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524 [TBL] [Abstract][Full Text] [Related]
31. Suppressed Interfacial Charge Recombination of PbS Quantum Dot Photovoltaics by Graphene Incorporated into ZnO Nanoparticles. Yang J; Lee J; Lee J; Yi W ACS Appl Mater Interfaces; 2018 Aug; 10(30):25311-25320. PubMed ID: 29863331 [TBL] [Abstract][Full Text] [Related]
32. Manipulation of Zinc Oxide with Zirconium Doping for Efficient Inverted Organic Solar Cells. Song X; Liu G; Gao W; Di Y; Yang Y; Li F; Zhou S; Zhang J Small; 2021 Feb; 17(7):e2006387. PubMed ID: 33475246 [TBL] [Abstract][Full Text] [Related]
33. Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer. Park M; Song J; An M; Lim J; Lee C; Roh J; Lee D RSC Adv; 2020 Feb; 10(14):8261-8265. PubMed ID: 35497858 [TBL] [Abstract][Full Text] [Related]
34. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects. Lu S; Liu P; Yang J; Liu S; Yang Y; Chen L; Liu J; Liu Y; Wang B; Lan X; Zhang J; Gao L; Tang J ACS Appl Mater Interfaces; 2023 Mar; 15(9):12061-12069. PubMed ID: 36848237 [TBL] [Abstract][Full Text] [Related]
35. High-Efficiency PbS Quantum-Dot Solar Cells with Greatly Simplified Fabrication Processing via "Solvent-Curing". Lu K; Wang Y; Liu Z; Han L; Shi G; Fang H; Chen J; Ye X; Chen S; Yang F; Shulga AG; Wu T; Gu M; Zhou S; Fan J; Loi MA; Ma W Adv Mater; 2018 Jun; 30(25):e1707572. PubMed ID: 29718542 [TBL] [Abstract][Full Text] [Related]
36. High-Performance Self-Powered Quantum Dot Infrared Photodetector with Azide Ion Solution Treated Electron Transport Layer. Choi YK; Kim TH; Jung BK; Park T; Lee YM; Oh S; Choi HJ; Park J; Bae SI; Lee Y; Shim JW; Park HY; Oh SJ Small; 2024 May; 20(18):e2308375. PubMed ID: 38073328 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and Processing Strategy for High-Bandgap PbS Quantum Dots: A Promising Candidate for Harvesting High-Energy Photons in Solar Cells. Shinde DD; Sharma A; Dambhare NV; Mahajan C; Biswas A; Mitra A; Rath AK ACS Appl Mater Interfaces; 2024 Aug; 16(32):42522-42533. PubMed ID: 39087921 [TBL] [Abstract][Full Text] [Related]
38. Breaking the Size Limitation of Directly-Synthesized PbS Quantum Dot Inks Toward Efficient Short-wavelength Infrared Optoelectronic Applications. Liu Y; Gao Y; Yang Q; Xu G; Zhou X; Shi G; Lyu X; Wu H; Liu J; Fang S; Ullah MI; Song L; Lu K; Cao M; Zhang Q; Li T; Xu J; Wang S; Liu Z; Ma W Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300396. PubMed ID: 36849867 [TBL] [Abstract][Full Text] [Related]