These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39116982)
1. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Guo S; Yang L; Hou C; Jiang S; Ma X; Shi L; Zheng B; Ye L; He X Int J Biol Macromol; 2024 Oct; 277(Pt 4):134562. PubMed ID: 39116982 [TBL] [Abstract][Full Text] [Related]
2. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567 [TBL] [Abstract][Full Text] [Related]
3. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
4. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. Pal P; Chakraborty S; Jana B J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044 [TBL] [Abstract][Full Text] [Related]
5. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
6. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
7. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein. Kuffel A; Czapiewski D; Zielkiewicz J J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Celik Y; Drori R; Pertaya-Braun N; Altan A; Barton T; Bar-Dolev M; Groisman A; Davies PL; Braslavsky I Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1309-14. PubMed ID: 23300286 [TBL] [Abstract][Full Text] [Related]
9. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface. Grabowska J; Kuffel A; Zielkiewicz J Phys Chem Chem Phys; 2018 Oct; 20(39):25365-25376. PubMed ID: 30260360 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. Duboué-Dijon E; Laage D J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800 [TBL] [Abstract][Full Text] [Related]
12. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Modig K; Qvist J; Marshall CB; Davies PL; Halle B Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761 [TBL] [Abstract][Full Text] [Related]
13. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Nutt DR; Smith JC J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821 [TBL] [Abstract][Full Text] [Related]
14. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Midya US; Bandyopadhyay S J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578 [TBL] [Abstract][Full Text] [Related]
16. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
17. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics of Hydration Water around an Antifreeze Protein: A Molecular Simulation Study. Pandey HD; Leitner DM J Phys Chem B; 2017 Oct; 121(41):9498-9507. PubMed ID: 28933162 [TBL] [Abstract][Full Text] [Related]
19. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
20. Formation of ice-like water structure on the surface of an antifreeze protein. Smolin N; Daggett V J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]