These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39117132)
1. The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Kristanto D; Burkhardt M; Thiel C; Debener S; Gießing C; Hildebrandt A Neurosci Biobehav Rev; 2024 Oct; 165():105846. PubMed ID: 39117132 [TBL] [Abstract][Full Text] [Related]
3. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age. Churchill NW; Raamana P; Spring R; Strother SC Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431 [TBL] [Abstract][Full Text] [Related]
4. Motion-Dependent Effects of Functional Magnetic Resonance Imaging Preprocessing Methodology on Global Functional Connectivity. DeSalvo MN Brain Connect; 2020 Dec; 10(10):578-584. PubMed ID: 33216639 [No Abstract] [Full Text] [Related]
5. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods. Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942 [TBL] [Abstract][Full Text] [Related]
6. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity. Churchill NW; Yourganov G; Oder A; Tam F; Graham SJ; Strother SC PLoS One; 2012; 7(2):e31147. PubMed ID: 22383999 [TBL] [Abstract][Full Text] [Related]
8. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI. Churchill NW; Spring R; Afshin-Pour B; Dong F; Strother SC PLoS One; 2015; 10(7):e0131520. PubMed ID: 26161667 [TBL] [Abstract][Full Text] [Related]
9. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI. Graff K; Tansey R; Ip A; Rohr C; Dimond D; Dewey D; Bray S Dev Cogn Neurosci; 2022 Apr; 54():101087. PubMed ID: 35196611 [TBL] [Abstract][Full Text] [Related]
10. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA. Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131 [TBL] [Abstract][Full Text] [Related]
11. Pypreclin: An automatic pipeline for macaque functional MRI preprocessing. Tasserie J; Grigis A; Uhrig L; Dupont M; Amadon A; Jarraya B Neuroimage; 2020 Feb; 207():116353. PubMed ID: 31743789 [TBL] [Abstract][Full Text] [Related]
12. The data-processing multiverse of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP processing and reduction pipelines. Clayson PE; Baldwin SA; Rocha HA; Larson MJ Neuroimage; 2021 Dec; 245():118712. PubMed ID: 34800661 [TBL] [Abstract][Full Text] [Related]
13. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination. Shirer WR; Jiang H; Price CM; Ng B; Greicius MD Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368 [TBL] [Abstract][Full Text] [Related]
14. Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: A [ Nørgaard M; Ganz M; Svarer C; Frokjaer VG; Greve DN; Strother SC; Knudsen GM Neuroimage; 2019 Oct; 199():466-479. PubMed ID: 31158479 [TBL] [Abstract][Full Text] [Related]
15. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI. Gargouri F; Kallel F; Delphine S; Ben Hamida A; Lehéricy S; Valabregue R Front Comput Neurosci; 2018; 12():8. PubMed ID: 29497372 [TBL] [Abstract][Full Text] [Related]
16. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662 [TBL] [Abstract][Full Text] [Related]
17. Cortical Surface-Informed Volumetric Spatial Smoothing of fMRI Data via Graph Signal Processing. Behjat H; Westin CF; Aganj I Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3804-3808. PubMed ID: 34892064 [TBL] [Abstract][Full Text] [Related]
18. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines. Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327 [TBL] [Abstract][Full Text] [Related]
19. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans. Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J Elife; 2022 Dec; 11():. PubMed ID: 36546674 [TBL] [Abstract][Full Text] [Related]
20. Effects of spatial smoothing on functional brain networks. Alakörkkö T; Saarimäki H; Glerean E; Saramäki J; Korhonen O Eur J Neurosci; 2017 Nov; 46(9):2471-2480. PubMed ID: 28922510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]