These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39117189)
1. Extending the SUSI peatland simulator to include dissolved organic carbon formation, transport and biodegradation - Proper water management reduces lateral carbon fluxes and improves carbon balance. Palviainen M; Pumpanen J; Mosquera V; Hasselquist EM; Laudon H; Ostonen I; Kull A; Wilson FR; Peltomaa E; Könönen M; Launiainen S; Peltola H; Ojala A; Laurén A Sci Total Environ; 2024 Nov; 950():175173. PubMed ID: 39117189 [TBL] [Abstract][Full Text] [Related]
2. A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes. Tong CHM; Noumonvi KD; Ratcliffe J; Laudon H; Järveoja J; Drott A; Nilsson MB; Peichl M Glob Chang Biol; 2024 Mar; 30(3):e17246. PubMed ID: 38501699 [TBL] [Abstract][Full Text] [Related]
3. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling. Huotari J; Nykänen H; Forsius M; Arvola L Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508 [TBL] [Abstract][Full Text] [Related]
4. Water quality and the biodegradability of dissolved organic carbon in drained boreal peatland under different forest harvesting intensities. Palviainen M; Peltomaa E; Laurén A; Kinnunen N; Ojala A; Berninger F; Zhu X; Pumpanen J Sci Total Environ; 2022 Feb; 806(Pt 4):150919. PubMed ID: 34653471 [TBL] [Abstract][Full Text] [Related]
5. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Nugent KA; Strachan IB; Strack M; Roulet NT; Rochefort L Glob Chang Biol; 2018 Dec; 24(12):5751-5768. PubMed ID: 30225998 [TBL] [Abstract][Full Text] [Related]
6. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Olefeldt D; Roulet NT Glob Chang Biol; 2014 Oct; 20(10):3122-36. PubMed ID: 24753046 [TBL] [Abstract][Full Text] [Related]
7. Identifying the role of environmental drivers in organic carbon export from a forested peat catchment. Ryder E; de Eyto E; Dillane M; Poole R; Jennings E Sci Total Environ; 2014 Aug; 490():28-36. PubMed ID: 24840277 [TBL] [Abstract][Full Text] [Related]
8. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
9. Stronger negative priming effect and lower basal respiration rates in nutrient-poor as compared to nutrient-rich forestry-drained peatland. Linkosalmi M; Lohila A; Biasi C Rapid Commun Mass Spectrom; 2023 Aug; 37(16):e9540. PubMed ID: 37194121 [TBL] [Abstract][Full Text] [Related]
10. Hydrology-driven ecosystem respiration determines the carbon balance of a boreal peatland. Gažovič M; Forbrich I; Jager DF; Kutzbach L; Wille C; Wilmking M Sci Total Environ; 2013 Oct; 463-464():675-82. PubMed ID: 23845859 [TBL] [Abstract][Full Text] [Related]
11. Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow. Tang J; Yurova AY; Schurgers G; Miller PA; Olin S; Smith B; Siewert MB; Olefeldt D; Pilesjö P; Poska A Sci Total Environ; 2018 May; 622-623():260-274. PubMed ID: 29216467 [TBL] [Abstract][Full Text] [Related]
12. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. Campeau A; Bishop KH; Billett MF; Garnett MH; Laudon H; Leach JA; Nilsson MB; Öquist MG; Wallin MB Glob Chang Biol; 2017 Dec; 23(12):5523-5536. PubMed ID: 28712133 [TBL] [Abstract][Full Text] [Related]
13. Effects of drainage on dissolved organic carbon (DOC) characteristics of surface water from a mountain peatland. Xu X; Lu K; Wang Z; Wang M; Wang S Sci Total Environ; 2021 Oct; 789():147848. PubMed ID: 34052484 [TBL] [Abstract][Full Text] [Related]
14. Sources of dissolved organic carbon (DOC) in a mixed land use catchment (Exe, UK). Ritson JP; Croft JK; Clark JM; Brazier RE; Templeton MR; Smith D; Graham NJD Sci Total Environ; 2019 May; 666():165-175. PubMed ID: 30798227 [TBL] [Abstract][Full Text] [Related]
15. Dissolved organic matter concentration, molecular composition, and functional groups in contrasting management practices of peatlands. Negassa W; Eckhardt KU; Regier T; Leinweber P J Environ Qual; 2021 Nov; 50(6):1364-1380. PubMed ID: 34403153 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of dissolved organic matter following 20years of peatland restoration. Höll BS; Fiedler S; Jungkunst HF; Kalbitz K; Freibauer A; Drösler M; Stahr K Sci Total Environ; 2009 Dec; 408(1):78-83. PubMed ID: 19800658 [TBL] [Abstract][Full Text] [Related]
17. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment. Lou XD; Zhai SQ; Kang B; Hu YL; Hu LL PLoS One; 2014; 9(11):e109861. PubMed ID: 25369065 [TBL] [Abstract][Full Text] [Related]
18. Impacts of historical ditching on peat volume and carbon in northern Minnesota USA peatlands. Krause L; McCullough KJ; Kane ES; Kolka RK; Chimner RA; Lilleskov EA J Environ Manage; 2021 Oct; 296():113090. PubMed ID: 34256296 [TBL] [Abstract][Full Text] [Related]
19. Influence of Water Table Depth on Pore Water Chemistry and Trihalomethane Formation Potential in Peatlands. Gough R; Holliman PJ; Fenner N; Peacock M; Freeman C Water Environ Res; 2016 Feb; 88(2):107-17. PubMed ID: 26803099 [TBL] [Abstract][Full Text] [Related]