These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39117196)
1. Damage evolution characteristics of siliceous slate with varying initial water content during freeze-thaw cycles. Yang Z; Zhao Q; Gan J; Zhang J; Chen M; Zhu Y Sci Total Environ; 2024 Nov; 950():175200. PubMed ID: 39117196 [TBL] [Abstract][Full Text] [Related]
2. Study on physical and mechanical properties of high-grade highway subgrade slate in permafrost region under freeze-thaw cycles. Ye Z; Wang Q; Fang J; Zhang K; Huang H; Ge A Sci Rep; 2024 Aug; 14(1):19209. PubMed ID: 39160205 [TBL] [Abstract][Full Text] [Related]
3. Study on the Influence of Saturation on Freeze-Thaw Damage Characteristics of Sandstone. Zhang X; Jin J; Liu X; Wang Y; Li Y Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984192 [TBL] [Abstract][Full Text] [Related]
4. Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze-Thaw Environment. Yue J; Ma C; Zhao L; Kong Q; Xu X; Wang Z; Chen Y Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269050 [TBL] [Abstract][Full Text] [Related]
5. Energy Dissipation and Damage Evolution during Dynamic Fracture of Muddy Siltstones Containing Initial Damage under the Freeze Thaw Effect. Jia Y; Bai Y; Xia D; Li F; Liang B Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614459 [TBL] [Abstract][Full Text] [Related]
6. Deterioration mechanisms of tuff with surface fractures under freeze-thaw cycles. Lai R; Zhang Z; Zhu J; Xu Z; Wei X; Liu X; Xiong B Sci Rep; 2024 Jun; 14(1):13402. PubMed ID: 38862575 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the influence of freeze-thaw cycles on the joint strength of granite in the Eastern Tibetan Plateau, China. Qi L; Wang J; Zhang D; Zhang Y; Ma J Sci Rep; 2024 Oct; 14(1):24085. PubMed ID: 39406836 [TBL] [Abstract][Full Text] [Related]
8. Particle size composition characteristics of weathered debris from grey-green slate under the action of freeze-thaw and dry-wet cycles. Wang J; Li W; Mu M; Chen J; Li Y; Liu H; Su Q Sci Rep; 2023 Jan; 13(1):1421. PubMed ID: 36697473 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze-Thaw Environment. Jin X; Hou C; He J; Dias D Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591594 [TBL] [Abstract][Full Text] [Related]
10. Studies on the Deformation and Macro-Micro-Damage Characteristics of Water-Bearing Sandstone under Cyclic Loading and Unloading Tests. Zhang Z; Chi XL; Yang K; Lyu X; Wang Y ACS Omega; 2023 Jun; 8(22):19843-19852. PubMed ID: 37305265 [TBL] [Abstract][Full Text] [Related]
11. Experimental study on the effect of freeze-thaw cycles to the cohesion and moisture content of geogrid reinforced silty clay. Zhao R; Liu X; Li Q; Jin D; Gao W Sci Rep; 2024 Aug; 14(1):19478. PubMed ID: 39174568 [TBL] [Abstract][Full Text] [Related]
12. Strength degradation characteristics and damage constitutive model of sandstone under freeze-thaw cycles. Wang Z; Yu M; Wang L; Xie H; Xu Y; Wang L Sci Rep; 2024 Sep; 14(1):22674. PubMed ID: 39349576 [TBL] [Abstract][Full Text] [Related]
13. Effect of Wet-Dry Cycles on the Mechanical Performances and Microstructure of Pisha Sandstone. Zhao Y; Yang C; Qu F; Wu Z; Ding K; Liang Z Molecules; 2023 Mar; 28(6):. PubMed ID: 36985505 [TBL] [Abstract][Full Text] [Related]
14. The impacts of freeze-thaw cycles on saturated hydraulic conductivity and microstructure of saline-alkali soils. Xu W; Li K; Chen L; Kong W; Liu C Sci Rep; 2021 Sep; 11(1):18655. PubMed ID: 34545144 [TBL] [Abstract][Full Text] [Related]
15. Study on Failure Mechanism and Numerical Simulation of Argillaceous Slate in Southeastern Guizhou. Zhang J; Zhang W; Lu K; Yang G ACS Omega; 2023 Sep; 8(37):33444-33451. PubMed ID: 37744843 [TBL] [Abstract][Full Text] [Related]
16. Damage Evolution and Acoustic Emission Characteristics of Sandstone under Freeze-Thaw Cycles. Wang C; You R; Lv W; Sui Q; Yan Y; Zhu H ACS Omega; 2024 Jan; 9(4):4892-4904. PubMed ID: 38313547 [TBL] [Abstract][Full Text] [Related]
17. Lithofacies Types and Physical Characteristics of Organic-Rich Shale in the Wufeng-Longmaxi Formation, Xichang Basin, China. He W; Li T; Mou B; Lei Y; Song J; Liu Z ACS Omega; 2023 May; 8(20):18165-18179. PubMed ID: 37251139 [TBL] [Abstract][Full Text] [Related]
18. Mesoscopic structural damage and permeability evolution of Shale subjected to freeze-thaw treatment. Wang JG; Xuan ZQ; Jin Q; Sun WJ; Liang B; Yu QR Sci Rep; 2022 Feb; 12(1):2202. PubMed ID: 35140297 [TBL] [Abstract][Full Text] [Related]
19. Effect of freeze-thaw cycle on physical and mechanical properties and damage characteristics of sandstone. Chen L; Li K; Song G; Zhang D; Liu C Sci Rep; 2021 Jun; 11(1):12315. PubMed ID: 34112898 [TBL] [Abstract][Full Text] [Related]
20. Experimental Study on the Microfabrication and Mechanical Properties of Freeze-Thaw Fractured Sandstone under Cyclic Loading and Unloading Effects. Liu T; Cai W; Sheng Y; Huang J Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]