These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39118363)

  • 1. RLpMIEC: High-Affinity Peptide Generation Targeting Major Histocompatibility Complex-I Guided and Interpreted by Interaction Spectrum-Navigated Reinforcement Learning.
    Deng Q; Wang Z; Xiang S; Wang Q; Liu Y; Hou T; Sun H
    J Chem Inf Model; 2024 Aug; 64(16):6432-6449. PubMed ID: 39118363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico design of MHC class I high binding affinity peptides through motifs activation map.
    Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.
    Goodswen SJ; Kennedy PJ; Ellis JT
    PLoS One; 2014; 9(12):e115745. PubMed ID: 25545691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncanonical peptides in complex with MHC class I.
    Apostolopoulos V; Lazoura E
    Expert Rev Vaccines; 2004 Apr; 3(2):151-62. PubMed ID: 15056041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strict Assembly Restriction of Peptides from Rabbit Hemorrhagic Disease Virus Presented by Rabbit Major Histocompatibility Complex Class I Molecule RLA-A1.
    Zhang Q; Liu K; Yue C; Zhang D; Lu D; Xiao W; Liu P; Zhao Y; Gao G; Ding C; Lyu J; Liu WJ
    J Virol; 2020 Aug; 94(17):. PubMed ID: 32522857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction.
    Glukhov E; Kalitin D; Stepanenko D; Zhu Y; Nguyen T; Jones G; Patsahan T; Simmerling C; Mitchell JC; Vajda S; Dill KA; Padhorny D; Kozakov D
    Biophys J; 2024 Sep; 123(17):2902-2909. PubMed ID: 38751115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy landscapes of peptide-MHC binding.
    Collesano L; Łuksza M; Lässig M
    PLoS Comput Biol; 2024 Sep; 20(9):e1012380. PubMed ID: 39226310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide binding by class I and class II MHC molecules.
    Batalia MA; Collins EJ
    Biopolymers; 1997; 43(4):281-302. PubMed ID: 9316393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.
    Carrasco Pro S; Zimic M; Nielsen M
    Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.