These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39118620)

  • 21. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
    Schaffter SW; Kengmana E; Fern J; Byrne SR; Schulman R
    ACS Synth Biol; 2024 Jul; 13(7):1964-1977. PubMed ID: 38885464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of a General RNA-Cleaving FANA Enzyme.
    Wang Y; Ngor AK; Nikoomanzar A; Chaput JC
    Nat Commun; 2018 Nov; 9(1):5067. PubMed ID: 30498223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology.
    Wang G; Du Y; Ma X; Ye F; Qin Y; Wang Y; Xiang Y; Tao R; Chen T
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase.
    Jackson LN; Chim N; Shi C; Chaput JC
    Nucleic Acids Res; 2019 Jul; 47(13):6973-6983. PubMed ID: 31170294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase.
    Torres LL; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e41. PubMed ID: 29927114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructures from Synthetic Genetic Polymers.
    Taylor AI; Beuron F; Peak-Chew SY; Morris EP; Herdewijn P; Holliger P
    Chembiochem; 2016 Jun; 17(12):1107-10. PubMed ID: 26992063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time investigation of nucleic acids phosphorylation process using molecular beacons.
    Tang Z; Wang K; Tan W; Ma C; Li J; Liu L; Guo Q; Meng X
    Nucleic Acids Res; 2005 Jun; 33(11):e97. PubMed ID: 15961728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in evolved T7 RNA polymerases for expanding the frontiers of enzymatic nucleic acid synthesis.
    Shu L; Yang L; Nie Z; Lei C
    Chembiochem; 2024 Jul; ():e202400483. PubMed ID: 39085046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Click nucleic acid ligation: applications in biology and nanotechnology.
    El-Sagheer AH; Brown T
    Acc Chem Res; 2012 Aug; 45(8):1258-67. PubMed ID: 22439702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic Synthesis of TNA Protects DNA Nanostructures.
    Qin B; Wang Q; Wang Y; Han F; Wang H; Jiang S; Yu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317334. PubMed ID: 38323479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutant polymerases capable of 2' fluoro-modified nucleic acid synthesis and amplification with improved accuracy.
    Christensen TA; Lee KY; Gottlieb SZP; Carrier MB; Leconte AM
    RSC Chem Biol; 2022 Aug; 3(8):1044-1051. PubMed ID: 35975008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification.
    Liu S; Ming J; Lin Y; Wang C; Cheng C; Liu T; Wang L
    Biosens Bioelectron; 2014 May; 55():225-30. PubMed ID: 24384264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase.
    Lillehaug JR; Kleppe RK; Kleppe K
    Biochemistry; 1976 May; 15(9):1858-65. PubMed ID: 178357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification.
    Chen F; Zhao Y; Qi L; Fan C
    Biosens Bioelectron; 2013 Sep; 47():218-24. PubMed ID: 23584226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nanoplatform based on metal-organic frameworks and coupled exonuclease reaction for the fluorimetric determination of T4 polynucleotide kinase activity and inhibition.
    Chai Y; Cheng X; Xu G; Wei F; Bao J; Mei J; Ren D; Hu Q; Cen Y
    Mikrochim Acta; 2020 Mar; 187(4):243. PubMed ID: 32206934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.