BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3912011)

  • 21. EPR and electron nuclear double resonance investigation of oxidized hydrogenase II (uptake) from Clostridium pasteurianum W5. Effects of carbon monoxide binding.
    Telser J; Benecky MJ; Adams MW; Mortenson LE; Hoffman BM
    J Biol Chem; 1987 May; 262(14):6589-94. PubMed ID: 3032973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for siroheme-Fe4S4 interaction in spinach ferredoxin-sulfite reductase.
    Krueger RJ; Siegel LM
    Biochemistry; 1982 Jun; 21(12):2905-9. PubMed ID: 6285956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of the iron-sulfur component and of the siroheme modification in the resting state of sulfite reductase.
    Brânzanic AMV; Ryde U; Silaghi-Dumitrescu R
    J Inorg Biochem; 2020 Feb; 203():110928. PubMed ID: 31756559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase.
    Pierik AJ; Hagen WR
    Eur J Biochem; 1991 Jan; 195(2):505-16. PubMed ID: 1847685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordination of the Rieske-type [2Fe-2S] cluster of the terminal iron-sulfur protein of Pseudomonas putida benzene 1,2-dioxygenase, studied by one- and two-dimensional electron spin-echo envelope modulation spectroscopy.
    Shergill JK; Joannou CL; Mason JR; Cammack R
    Biochemistry; 1995 Dec; 34(51):16533-42. PubMed ID: 8527426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the [4Fe-4S]+ cluster at the active site of aconitase by 57Fe, 33S, and 14N electron nuclear double resonance spectroscopy.
    Werst MM; Kennedy MC; Houseman AL; Beinert H; Hoffman BM
    Biochemistry; 1990 Nov; 29(46):10533-40. PubMed ID: 2271662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions.
    Crane BR; Siegel LM; Getzoff ED
    Science; 1995 Oct; 270(5233):59-67. PubMed ID: 7569952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic properties of siroheme extracted from sulfite reductases.
    Kang L; LeGall J; Kowal AT; Johnson MK
    J Inorg Biochem; 1987 Aug; 30(4):273-90. PubMed ID: 3668524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An EPR and electron nuclear double resonance investigation of carbon monoxide binding to hydrogenase I (bidirectional) from Clostridium pasteurianum W5.
    Telser J; Benecky MJ; Adams MW; Mortenson LE; Hoffman BM
    J Biol Chem; 1986 Oct; 261(29):13536-41. PubMed ID: 3020036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of extended Fe
    Cepeda MR; McGarry L; Pennington JM; Krzystek J; Stroupe ME
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):933-940. PubMed ID: 29852252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-spin sulfite reductases: a new homologous group of non-heme iron-siroheme proteins in anaerobic bacteria.
    Moura I; Lino AR; Moura JJ; Xavier AV; Fauque G; Peck HD; LeGall J
    Biochem Biophys Res Commun; 1986 Dec; 141(3):1032-41. PubMed ID: 3028382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic redox chemistry: a proposed reaction pathway for the six-electron reduction of SO3(2-) to S2- by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough).
    Tan J; Cowan JA
    Biochemistry; 1991 Sep; 30(36):8910-7. PubMed ID: 1888748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship between structure and function for the sulfite reductases.
    Crane BR; Getzoff ED
    Curr Opin Struct Biol; 1996 Dec; 6(6):744-56. PubMed ID: 8994874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases: EPR silent spin S = 1/2 states.
    Day EP; Peterson J; Bonvoisin JJ; Young LJ; Wilkerson JO; Siegel LM
    Biochemistry; 1988 Mar; 27(6):2126-32. PubMed ID: 2837283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance Raman study of sirohydrochlorin and siroheme in sulfite reductases from sulfate reducing bacteria.
    Underwood-Lemons T; Moura I; Yue KT
    Biochim Biophys Acta; 1993 Jul; 1157(3):275-84. PubMed ID: 8323957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 14,15N, 13C, 57Fe, and 1,2H Q-band ENDOR study of Fe-S proteins with clusters that have endogenous sulfur ligands.
    Houseman AL; Oh BH; Kennedy MC; Fan C; Werst MM; Beinert H; Markley JL; Hoffman BM
    Biochemistry; 1992 Feb; 31(7):2073-80. PubMed ID: 1311203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron-sulfur clusters.
    Arendsen AF; Verhagen MF; Wolbert RB; Pierik AJ; Stams AJ; Jetten MS; Hagen WR
    Biochemistry; 1993 Oct; 32(39):10323-30. PubMed ID: 8399175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase.
    Krueger RJ; Siegel LM
    Biochemistry; 1982 Jun; 21(12):2892-904. PubMed ID: 7104302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Siroheme-[4Fe-4S] Coupled Center.
    Askenasy I; Stroupe ME
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.