These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39121420)

  • 1. Ab Initio Self-Trapped Excitons.
    Bai Y; Wang Y; Meng S
    Phys Rev Lett; 2024 Jul; 133(4):046903. PubMed ID: 39121420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic Polarons and Self-Trapped Excitons from First-Principles Exciton-Phonon Couplings.
    Dai Z; Lian C; Lafuente-Bartolome J; Giustino F
    Phys Rev Lett; 2024 Jan; 132(3):036902. PubMed ID: 38307080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-trapped excitons in soft semiconductors.
    Tan J; Li D; Zhu J; Han N; Gong Y; Zhang Y
    Nanoscale; 2022 Nov; 14(44):16394-16414. PubMed ID: 36317508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium)
    Panda DP; Swain D; Chaudhary M; Mishra S; Bhutani G; De AK; Waghmare UV; Sundaresan A
    Inorg Chem; 2022 Oct; 61(43):17026-17036. PubMed ID: 36242586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon screening and dissociation of excitons at finite temperatures from first principles.
    Alvertis AM; Haber JB; Li Z; Coveney CJN; Louie SG; Filip MR; Neaton JB
    Proc Natl Acad Sci U S A; 2024 Jul; 121(30):e2403434121. PubMed ID: 39024110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Phonon Interaction and Relaxation Times from First Principles.
    Chen HY; Sangalli D; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(10):107401. PubMed ID: 32955294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications.
    Li S; Luo J; Liu J; Tang J
    J Phys Chem Lett; 2019 Apr; 10(8):1999-2007. PubMed ID: 30946586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-trapped excitons in two-dimensional perovskites.
    Li J; Wang H; Li D
    Front Optoelectron; 2020 Sep; 13(3):225-234. PubMed ID: 36641579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast many-body bright-dark exciton transition in anatase TiO
    Wang A; Jiang X; Zheng Q; Petek H; Zhao J
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2307671120. PubMed ID: 37956295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and Ab Initio Computation of the Anisotropic Light Emission in Monolayer Transition Metal Dichalcogenides.
    Chen HY; Palummo M; Sangalli D; Bernardi M
    Nano Lett; 2018 Jun; 18(6):3839-3843. PubMed ID: 29737164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarons from First Principles, without Supercells.
    Sio WH; Verdi C; Poncé S; Giustino F
    Phys Rev Lett; 2019 Jun; 122(24):246403. PubMed ID: 31322376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Screening of Excitons in Semiconductors: Halide Perovskites and Beyond.
    Filip MR; Haber JB; Neaton JB
    Phys Rev Lett; 2021 Aug; 127(6):067401. PubMed ID: 34420331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity Control of Excitons in Two-Dimensional Materials.
    Latini S; Ronca E; De Giovannini U; Hübener H; Rubio A
    Nano Lett; 2019 Jun; 19(6):3473-3479. PubMed ID: 31046291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Dynamics of Self-Trapped Excitons in Cs
    Rachna ; Singh A; Kumar S; Sapra S
    Nano Lett; 2024 Jun; 24(22):6797-6804. PubMed ID: 38775795
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden-Popper Two-Dimensional Lead Halide Perovskite Single Crystals.
    Liang M; Lin W; Zhao Q; Zou X; Lan Z; Meng J; Shi Q; Castelli IE; Canton SE; Pullerits T; Zheng K
    J Phys Chem Lett; 2021 May; 12(20):4965-4971. PubMed ID: 34014103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon-Induced Localization of Excitons in Molecular Crystals from First Principles.
    Alvertis AM; Haber JB; Engel EA; Sharifzadeh S; Neaton JB
    Phys Rev Lett; 2023 Feb; 130(8):086401. PubMed ID: 36898125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-trapped exciton emission in inorganic copper(I) metal halides.
    Zhang B; Wu X; Zhou S; Liang G; Hu Q
    Front Optoelectron; 2021 Dec; 14(4):459-472. PubMed ID: 36637760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitons in metal-halide perovskites from first-principles many-body perturbation theory.
    Leppert L
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab Initio Studies of Exciton g Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields.
    Deilmann T; Krüger P; Rohlfing M
    Phys Rev Lett; 2020 Jun; 124(22):226402. PubMed ID: 32567922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.