These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39121938)
1. Protein-peptide binding residue prediction based on protein language models and cross-attention mechanism. Hu J; Chen KX; Rao B; Ni JY; Thafar MA; Albaradei S; Arif M Anal Biochem; 2024 Nov; 694():115637. PubMed ID: 39121938 [TBL] [Abstract][Full Text] [Related]
2. Predicting protein-peptide binding residues via interpretable deep learning. Wang R; Jin J; Zou Q; Nakai K; Wei L Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077 [TBL] [Abstract][Full Text] [Related]
3. E2EATP: Fast and High-Accuracy Protein-ATP Binding Residue Prediction via Protein Language Model Embedding. Rao B; Yu X; Bai J; Hu J J Chem Inf Model; 2024 Jan; 64(1):289-300. PubMed ID: 38127815 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of protein-ATP binding residues using position-specific frequency matrix. Hu J; Zheng LL; Bai YS; Zhang KW; Yu DJ; Zhang GJ Anal Biochem; 2021 Aug; 626():114241. PubMed ID: 33971164 [TBL] [Abstract][Full Text] [Related]
5. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction. Shafiee S; Fathi A; Taherzadeh G Methods; 2024 Sep; 229():17-29. PubMed ID: 38871095 [TBL] [Abstract][Full Text] [Related]
6. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues. Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995 [TBL] [Abstract][Full Text] [Related]
7. Improving protein-protein interaction prediction using protein language model and protein network features. Hu J; Li Z; Rao B; Thafar MA; Arif M Anal Biochem; 2024 Oct; 693():115550. PubMed ID: 38679191 [TBL] [Abstract][Full Text] [Related]
8. MetalTrans: A Biological Language Model-Based Approach for Predicting Disease-Associated Mutations in Protein Metal-Binding Sites. Zhang M; Wang X; Xu S; Ge F; Paixao IC; Song J; Yu DJ J Chem Inf Model; 2024 Aug; 64(15):6216-6229. PubMed ID: 39092854 [TBL] [Abstract][Full Text] [Related]
9. A deep-learning framework for multi-level peptide-protein interaction prediction. Lei Y; Li S; Liu Z; Wan F; Tian T; Li S; Zhao D; Zeng J Nat Commun; 2021 Sep; 12(1):5465. PubMed ID: 34526500 [TBL] [Abstract][Full Text] [Related]
10. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy. Wei Q; Wang R; Jiang Y; Wei L; Sun Y; Geng J; Su R Comput Biol Med; 2023 Dec; 167():107631. PubMed ID: 37948966 [TBL] [Abstract][Full Text] [Related]
11. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework. Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704 [TBL] [Abstract][Full Text] [Related]
12. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model. Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579 [TBL] [Abstract][Full Text] [Related]
13. Prediction of protein-ATP binding residues using multi-view feature learning via contextual-based co-attention network. Wu JS; Liu Y; Ge F; Yu DJ Comput Biol Med; 2024 Apr; 172():108227. PubMed ID: 38460308 [TBL] [Abstract][Full Text] [Related]
14. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism. Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723 [TBL] [Abstract][Full Text] [Related]
15. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
16. Genome-scale annotation of protein binding sites via language model and geometric deep learning. Yuan Q; Tian C; Yang Y Elife; 2024 Apr; 13():. PubMed ID: 38630609 [TBL] [Abstract][Full Text] [Related]
17. Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction. Chen C; Wu T; Guo Z; Cheng J Proteins; 2021 Jun; 89(6):697-707. PubMed ID: 33538038 [TBL] [Abstract][Full Text] [Related]
18. GAPS: a geometric attention-based network for peptide binding site identification by the transfer learning approach. Zhu C; Zhang C; Shang T; Zhang C; Zhai S; Cao L; Xu Z; Su Z; Song Y; Su A; Li C; Duan H Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38990514 [TBL] [Abstract][Full Text] [Related]
19. ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites. Le VT; Zhan ZJ; Vu TT; Malik MS; Ou YY J Mol Graph Model; 2024 Jul; 130():108777. PubMed ID: 38642500 [TBL] [Abstract][Full Text] [Related]
20. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information. Qiao L; Xie D Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]