These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39121938)
21. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations. Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191 [TBL] [Abstract][Full Text] [Related]
22. Surface-based multimodal protein-ligand binding affinity prediction. Xu S; Shen L; Zhang M; Jiang C; Zhang X; Xu Y; Liu J; Liu X Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38905501 [TBL] [Abstract][Full Text] [Related]
23. Prediction of drug-target binding affinity based on multi-scale feature fusion. Yu H; Xu WX; Tan T; Liu Z; Shi JY Comput Biol Med; 2024 Aug; 178():108699. PubMed ID: 38870725 [TBL] [Abstract][Full Text] [Related]
24. MSTCRB: Predicting circRNA-RBP interaction by extracting multi-scale features based on transformer and attention mechanism. Zhou Y; Cui H; Liu D; Wang W Int J Biol Macromol; 2024 Oct; 278(Pt 2):134805. PubMed ID: 39153682 [TBL] [Abstract][Full Text] [Related]
25. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning. Li P; Liu ZP Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250 [TBL] [Abstract][Full Text] [Related]
26. Sequence-based prediction of protein-peptide binding sites using support vector machine. Taherzadeh G; Yang Y; Zhang T; Liew AW; Zhou Y J Comput Chem; 2016 May; 37(13):1223-9. PubMed ID: 26833816 [TBL] [Abstract][Full Text] [Related]
27. An integration of deep learning with feature embedding for protein-protein interaction prediction. Yao Y; Du X; Diao Y; Zhu H PeerJ; 2019; 7():e7126. PubMed ID: 31245182 [TBL] [Abstract][Full Text] [Related]
28. PepCNN deep learning tool for predicting peptide binding residues in proteins using sequence, structural, and language model features. Chandra A; Sharma A; Dehzangi I; Tsunoda T; Sattar A Sci Rep; 2023 Nov; 13(1):20882. PubMed ID: 38016996 [TBL] [Abstract][Full Text] [Related]
29. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y; Dong Q; Hong D; Wang X BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287 [TBL] [Abstract][Full Text] [Related]
30. SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning. Shafiee S; Fathi A; Taherzadeh G IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2029-2040. PubMed ID: 37015594 [TBL] [Abstract][Full Text] [Related]
31. Turbocharging protein binding site prediction with geometric attention, inter-resolution transfer learning, and homology-based augmentation. Lee D; Hwang W; Byun J; Shin B BMC Bioinformatics; 2024 Sep; 25(1):306. PubMed ID: 39304807 [TBL] [Abstract][Full Text] [Related]
32. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724 [TBL] [Abstract][Full Text] [Related]
33. MR2CPPIS: Accurate prediction of protein-protein interaction sites based on multi-scale Res2Net with coordinate attention mechanism. Gong Y; Li R; Liu Y; Wang J; Cao B; Fu X; Li R; Chen DZ Comput Biol Med; 2024 Jun; 176():108543. PubMed ID: 38744015 [TBL] [Abstract][Full Text] [Related]
34. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder. Khan ZU; Pi D Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753 [TBL] [Abstract][Full Text] [Related]
35. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions. Hertz T; Yanover C BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006 [TBL] [Abstract][Full Text] [Related]
36. Peptriever: a Bi-Encoder approach for large-scale protein-peptide binding search. Gurvich R; Markel G; Tanoli Z; Meirson T Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710496 [TBL] [Abstract][Full Text] [Related]
37. LMPhosSite: A Deep Learning-Based Approach for General Protein Phosphorylation Site Prediction Using Embeddings from the Local Window Sequence and Pretrained Protein Language Model. Pakhrin SC; Pokharel S; Pratyush P; Chaudhari M; Ismail HD; Kc DB J Proteome Res; 2023 Aug; 22(8):2548-2557. PubMed ID: 37459437 [TBL] [Abstract][Full Text] [Related]
38. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539 [TBL] [Abstract][Full Text] [Related]
39. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related]
40. DFpin: Deep learning-based protein-binding site prediction with feature-based non-redundancy from RNA level. Zhao X; Zhang Y; Du X Comput Biol Med; 2022 Mar; 142():105216. PubMed ID: 35030497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]