BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3912232)

  • 41. The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease.
    Morisset M; Capony F; Rochefort H
    Biochem Biophys Res Commun; 1986 Jul; 138(1):102-9. PubMed ID: 3527155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parasite killing in Plasmodium vivax malaria by nitric oxide: implication of aspartic protease inhibition.
    Sharma A; Eapen A; Subbarao SK
    J Biochem; 2004 Sep; 136(3):329-34. PubMed ID: 15598889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamics and proton uptake for pepstatin binding to retroviral and eukaryotic aspartic proteases.
    Xie D; Gulnik S; Collins L; Gustchina E; Bhat TN; Erickson JW
    Adv Exp Med Biol; 1998; 436():381-6. PubMed ID: 9561245
    [No Abstract]   [Full Text] [Related]  

  • 44. Leucocyte migration inhibition in vitro with inhibitors of aspartic and sulphhydryl proteinases.
    Lauritzen E; Møller S; Leerhoy J
    Acta Pathol Microbiol Immunol Scand C; 1984 Apr; 92(2):107-12. PubMed ID: 6203330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and mechanism of the pepsin-like family of aspartic peptidases.
    Dunn BM
    Chem Rev; 2002 Dec; 102(12):4431-58. PubMed ID: 12475196
    [No Abstract]   [Full Text] [Related]  

  • 46. Localization and characterization of hemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum.
    vander Jagt DL; Hunsaker LA; Campos NM; Scaletti JV
    Biochim Biophys Acta; 1992 Aug; 1122(3):256-64. PubMed ID: 1504087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new type of aspartic proteinase inhibitors with a symmetric structure.
    Tarasova NI; Gulnik SV; Prischenko AA; Livantsov MV; Lysogorskaya EN; Oksenoit ES
    Adv Exp Med Biol; 1991; 306():539-42. PubMed ID: 1812755
    [No Abstract]   [Full Text] [Related]  

  • 48. Crystal structures of rhizopuspepsin/inhibitor complexes.
    Parris KD; Hoover DJ; Davies DR
    Adv Exp Med Biol; 1991; 306():217-31. PubMed ID: 1812709
    [No Abstract]   [Full Text] [Related]  

  • 49. Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles.
    Bursavich MG; Rich DH
    J Med Chem; 2002 Jan; 45(3):541-58. PubMed ID: 11806706
    [No Abstract]   [Full Text] [Related]  

  • 50. Purification and properties of three intracellular proteinases from Candida albicans.
    Portillo F; Gancedo C
    Biochim Biophys Acta; 1986 Apr; 881(2):229-35. PubMed ID: 3513844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subsite preferences of pepstatin-insensitive carboxyl proteinases from prokaryotes: kumamolysin, a thermostable pepstatin-insensitive carboxyl proteinase.
    Oda K; Ogasawara S; Oyama H; Dunn BM
    J Biochem; 2000 Sep; 128(3):499-507. PubMed ID: 10965051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of a hemoglobin degrading aspartic protease from the malarial parasite Plasmodium vivax.
    Sharma A; Eapen A; Subbarao SK
    J Biochem; 2005 Jul; 138(1):71-8. PubMed ID: 16046450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic and mechanistic analysis of the association and dissociation of inhibitors interacting with secreted aspartic acid proteases 1 and 2 from Candida albicans.
    Backman D; Danielson UH
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):184-95. PubMed ID: 12637026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin.
    Fujimoto Z; Fujii Y; Kaneko S; Kobayashi H; Mizuno H
    J Mol Biol; 2004 Aug; 341(5):1227-35. PubMed ID: 15321718
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.
    Winterburn TJ; Wyatt DM; Phylip LH; Berry C; Bur D; Kay J
    Biol Chem; 2006 Aug; 387(8):1139-42. PubMed ID: 16895485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The interaction of aspartic proteinases with naturally-occurring inhibitors from actinomycetes and Ascaris lumbricoides.
    Valler MJ; Kay J; Aoyagi T; Dunn BM
    J Enzyme Inhib; 1985; 1(1):77-82. PubMed ID: 3916913
    [No Abstract]   [Full Text] [Related]  

  • 57. Theoretical models of aspartic proteases: active site properties, dimer stability and interactions with model inhibitors.
    Rayan A; Fliess A; Kotler M; Chorev M; Goldblum A
    Adv Exp Med Biol; 1991; 306():555-8. PubMed ID: 1812758
    [No Abstract]   [Full Text] [Related]  

  • 58. The selectivity of statine-based inhibitors against various human aspartic proteinases.
    Jupp RA; Dunn BM; Jacobs JW; Vlasuk G; Arcuri KE; Veber DF; Perlow DS; Payne LS; Boger J; de Laszlo S
    Biochem J; 1990 Feb; 265(3):871-8. PubMed ID: 2407237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. No role for pepstatin-A-sensitive acidic proteinases in reovirus infections of L or MDCK cells.
    Kothandaraman S; Hebert MC; Raines RT; Nibert ML
    Virology; 1998 Nov; 251(2):264-72. PubMed ID: 9837790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.