These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39122672)

  • 1. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements.
    Zhou Y; Ruesink F; Pavlovich M; Behunin R; Cheng H; Gertler S; Starbuck AL; Leenheer AJ; Pomerene AT; Trotter DC; Musick KM; Gehl M; Kodigala A; Eichenfield M; Lentine AL; Otterstrom N; Rakich P
    Nat Commun; 2024 Aug; 15(1):6796. PubMed ID: 39122672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits.
    Blésin T; Kao W; Siddharth A; Wang RN; Attanasio A; Tian H; Bhave SA; Kippenberg TJ
    Nat Commun; 2024 Jul; 15(1):6096. PubMed ID: 39030168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical ring resonator for efficient microwave-optical frequency conversion.
    Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M
    Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon.
    Gertler S; Otterstrom NT; Gehl M; Starbuck AL; Dallo CM; Pomerene AT; Trotter DC; Lentine AL; Rakich PT
    Nat Commun; 2022 Apr; 13(1):1947. PubMed ID: 35410331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators.
    Wu M; Zeuthen E; Balram KC; Srinivasan K
    Phys Rev Appl; 2020 Jan; 13(1):. PubMed ID: 34796259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip inter-modal Brillouin scattering.
    Kittlaus EA; Otterstrom NT; Rakich PT
    Nat Commun; 2017 Jul; 8():15819. PubMed ID: 28685776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting microwave and telecom photons with a silicon photonic nanomechanical interface.
    Arnold G; Wulf M; Barzanjeh S; Redchenko ES; Rueda A; Hease WJ; Hassani F; Fink JM
    Nat Commun; 2020 Sep; 11(1):4460. PubMed ID: 32901014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-light-enhanced Brillouin scattering with integrated Bragg grating.
    Xu M; Lei P; Bai Y; Chen Z; Xie X
    Opt Lett; 2024 Apr; 49(8):2177-2180. PubMed ID: 38621105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-efficient bandwidth enhancement of Brillouin microwave photonic bandpass filters.
    Raj P; Parihar R; Dhawan R; Choudhary A
    Opt Express; 2022 Aug; 30(17):30739-30749. PubMed ID: 36242172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.
    Jiang W; Sarabalis CJ; Dahmani YD; Patel RN; Mayor FM; McKenna TP; Van Laer R; Safavi-Naeini AH
    Nat Commun; 2020 Mar; 11(1):1166. PubMed ID: 32127538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chip-integrated coherent photonic-phononic memory.
    Merklein M; Stiller B; Vu K; Madden SJ; Eggleton BJ
    Nat Commun; 2017 Sep; 8(1):574. PubMed ID: 28924261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique.
    Chan EH; Minasian RA
    Opt Lett; 2013 Dec; 38(24):5292-5. PubMed ID: 24322240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering.
    Jiang Y; Zi Y; Bai G; Tian J
    Opt Lett; 2018 Apr; 43(8):1774-1777. PubMed ID: 29652361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated microwave photonic notch filter using a heterogeneously integrated Brillouin and active-silicon photonic circuit.
    Garrett M; Liu Y; Merklein M; Bui CT; Lai CK; Choi DY; Madden SJ; Casas-Bedoya A; Eggleton BJ
    Nat Commun; 2023 Nov; 14(1):7544. PubMed ID: 37985657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave quantum illumination.
    Barzanjeh S; Guha S; Weedbrook C; Vitali D; Shapiro JH; Pirandola S
    Phys Rev Lett; 2015 Feb; 114(8):080503. PubMed ID: 25768743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering.
    Byrnes A; Pant R; Li E; Choi DY; Poulton CG; Fan S; Madden S; Luther-Davies B; Eggleton BJ
    Opt Express; 2012 Aug; 20(17):18836-45. PubMed ID: 23038523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.