These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39122692)
1. Study of Manipulative Pore Formation upon Polymeric Coating for the Endowment of the Switchable Property between Passive Daytime Radiative Cooling and Heating. Cui P; Yan Y; Wei H; Wu S; Zhong S; Sun W ACS Appl Mater Interfaces; 2024 Aug; 16(33):44044-44054. PubMed ID: 39122692 [TBL] [Abstract][Full Text] [Related]
2. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
4. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating. Shi M; Song Z; Ni J; Du X; Cao Y; Yang Y; Wang W; Wang J ACS Nano; 2023 Feb; 17(3):2029-2038. PubMed ID: 36638216 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic Composite Coatings Can Achieve Durability and Efficient Radiative Cooling of Energy-Saving Buildings. Zhou W; Ma X; Liu M; Niu J; Wang S; Li S; Wang W; Fan Y ACS Appl Mater Interfaces; 2024 Sep; 16(35):46703-46718. PubMed ID: 39177497 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired Switchable Passive Daytime Radiative Cooling Coatings. Wang T; Xiao Y; King JL; Kats MA; Stebe KJ; Lee D ACS Appl Mater Interfaces; 2023 Oct; 15(41):48716-48724. PubMed ID: 37812501 [TBL] [Abstract][Full Text] [Related]
7. A Versatile Strategy for Concurrent Passive Daytime Radiative Cooling and Sustainable Energy Harvesting. Wang S; Wu Y; Pu M; Xu M; Zhang R; Yu T; Li X; Ma X; Su Y; Tai H; Guo Y; Luo X Small; 2024 Feb; 20(6):e2305706. PubMed ID: 37788906 [TBL] [Abstract][Full Text] [Related]
8. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044 [TBL] [Abstract][Full Text] [Related]
9. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling. Son S; Liu Y; Chae D; Lee H ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542 [TBL] [Abstract][Full Text] [Related]
10. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Chen M; Pang D; Mandal J; Chen X; Yan H; He Y; Yu N; Yang Y Nano Lett; 2021 Feb; 21(3):1412-1418. PubMed ID: 33524258 [TBL] [Abstract][Full Text] [Related]
11. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488 [TBL] [Abstract][Full Text] [Related]
12. Structure Design of Polymer-Based Films for Passive Daytime Radiative Cooling. Du M; Huang M; Yu X; Ren X; Sun Q Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557436 [TBL] [Abstract][Full Text] [Related]
13. Ultrawhite BaSO Li X; Peoples J; Yao P; Ruan X ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776 [TBL] [Abstract][Full Text] [Related]
14. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116 [TBL] [Abstract][Full Text] [Related]
15. Macro-Nanoporous Film with Cauliflower-Shaped Fibers for Highly Efficient Passive Daytime Radiative Cooling. Wei L; Li N; Liu H; Sun C; Chen A; Yang R; Qin Y; Bao H ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39360809 [TBL] [Abstract][Full Text] [Related]
16. Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Hong D; Lee YJ; Jeon OS; Lee IS; Lee SH; Won JY; Jeon YP; La Y; Kim S; Park GS; Yoo YJ; Park SY Nat Commun; 2024 May; 15(1):4457. PubMed ID: 38796451 [TBL] [Abstract][Full Text] [Related]
17. Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling. Saeed U; Altamimi MMS; Al-Turaif H Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732670 [TBL] [Abstract][Full Text] [Related]
18. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
19. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability. Zhang L; Zhan H; Xia Y; Zhang R; Xue J; Yong J; Zhao L; Liu Y; Feng S ACS Appl Mater Interfaces; 2023 Jul; 15(26):31994-32001. PubMed ID: 37347225 [TBL] [Abstract][Full Text] [Related]
20. Durable Self-Cleaning Radiative Cooling Coatings for Building Energy Efficiency. Ju H; Long H; Yang S; Wang F; Fang X; Fan W; Li C; Ou J; Li W ACS Appl Mater Interfaces; 2024 Jun; 16(25):32679-32692. PubMed ID: 38869497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]