These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 39122867)

  • 1. Influence of silver nanoparticles' size on their direct interactions with doxorubicin and its biological effects.
    Gołuński G; Konkel K; Galikowska-Bogut B; Bełdzińska P; Bury K; Zakrzewski M; Butowska K; Sądej R; Piosik J
    Sci Rep; 2024 Aug; 14(1):18544. PubMed ID: 39122867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silver nanoparticles synthesized by gamma radiation on the cytotoxicity of doxorubicin in human cancer cell lines and experimental animals.
    Mansour HH; Eid M; El-Arnaouty MB
    Hum Exp Toxicol; 2018 Jan; 37(1):38-50. PubMed ID: 28116921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy.
    Gurunathan S; Park JH; Han JW; Kim JH
    Int J Nanomedicine; 2015; 10():4203-22. PubMed ID: 26170659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer Potential of Doxorubicin in Combination with Green-Synthesized Silver Nanoparticle and its Cytotoxicity Effects on Cardio-Myoblast Normal Cells.
    Saeidi J; Dolatabadi S; Esfahani MB; Saeidi M; Mohtashami M; Mokhtari K; Ghasemi A
    Anticancer Agents Med Chem; 2021; 21(14):1842-1849. PubMed ID: 33292144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells.
    Gurunathan S; Raman J; Abd Malek SN; John PA; Vikineswary S
    Int J Nanomedicine; 2013; 8():4399-413. PubMed ID: 24265551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines.
    Ullah I; Khalil AT; Zia A; Hassan I; Shinwari ZK
    Microsc Res Tech; 2024 Jul; 87(7):1627-1639. PubMed ID: 38450823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells.
    Ghobadi M; Salehi S; Ardestani MTS; Mousavi-Khattat M; Shakeran Z; Khosravi A; Cordani M; Zarrabi A
    Eur J Pharm Biopharm; 2024 Aug; 201():114349. PubMed ID: 38848782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DOX-loaded silver nanotriangles and photothermal therapy exert a synergistic antibreast cancer effect via ROS/ERK1/2 signaling pathway.
    Li F; Yang H; Cao Y; Li D; Ma J; Liu P
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34749347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract.
    Dinparvar S; Bagirova M; Allahverdiyev AM; Abamor ES; Safarov T; Aydogdu M; Aktas D
    J Photochem Photobiol B; 2020 Jul; 208():111902. PubMed ID: 32470714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of silver nanoparticles and doxorubicin combination on DNA structure and its antiproliferative effect against T47D and MCF7 cell lines.
    Hekmat A; Saboury AA; Divsalar A
    J Biomed Nanotechnol; 2012 Dec; 8(6):968-82. PubMed ID: 23030005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells.
    Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH
    Biomed Res Int; 2013; 2013():535796. PubMed ID: 23936814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models.
    Murugesan K; Koroth J; Srinivasan PP; Singh A; Mukundan S; Karki SS; Choudhary B; Gupta CM
    Int J Nanomedicine; 2019; 14():5257-5270. PubMed ID: 31409988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bottom-Up Synthesis Approach to Silver Nanoparticles Induces Anti-Proliferative and Apoptotic Activities Against MCF-7, MCF-7/TAMR-1 and MCF-10A Human Breast Cell Lines.
    Zulkifli NI; Muhamad M; Mohamad Zain NN; Tan WN; Yahaya N; Bustami Y; Abdul Aziz A; Nik Mohamed Kamal NNS
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32971740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion, proliferation, and apoptosis in different molecular portraits of breast cancer treated with silver nanoparticles and its pathway-network analysis.
    Rodríguez-Razón CM; Yañez-Sánchez I; Ramos-Santillan VO; Velásquez-Ordóñez C; Gutiérrez-Rubio SA; García-García MR; López-Roa RI; Sánchez-Hernández PE; Daneri-Navarro A; García-Iglesias T
    Int J Nanomedicine; 2018; 13():1081-1095. PubMed ID: 29503542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Effect of Surface Modification of Metal Oxides on Silver Nanoparticles: Optical Properties and Potential Toxicity.
    Monem AS; Fahmy HM; Mosleh AM; Salama EM; Ahmed MM; Mahmoud EAAEQ; Nour BH; Fathy MM
    Cell Biochem Biophys; 2024 Jun; 82(2):1213-1224. PubMed ID: 38743135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viburnum nervosum Leaf Extract Mediated Green Synthesis of Silver Nanoparticles: A Viable Approach to Increase the Efficacy of an Anticancer Drug.
    Zahoor I; Jan F; Sharma U; Sahu K; Sharma A; Pareek S; Shrivastava D; Bisen PS
    Anticancer Agents Med Chem; 2021; 21(10):1266-1274. PubMed ID: 33023458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity and Synergistic Effect of Biogenically Synthesized Ternary Therapeutic Nano Conjugates Comprising Plant Active Principle, Silver and Anticancer Drug on MDA-MB-453 Breast Cancer Cell Line.
    Karuppiah A; Rajan R; Ramanathan M; Nagarajan A
    Asian Pac J Cancer Prev; 2020 Jan; 21(1):195-204. PubMed ID: 31983184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.
    Han JW; Gurunathan S; Choi YJ; Kim JH
    Int J Nanomedicine; 2017; 12():7529-7549. PubMed ID: 29066898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiproliferative activity of
    Yadav A; Mendhulkar VD
    J Cancer Res Ther; 2018; 14(6):1316-1324. PubMed ID: 30488850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.