These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39122907)

  • 1. One-pot synthesis of cellobiose from sucrose using sucrose phosphorylase and cellobiose phosphorylase co-displaying Pichia pastoris as a reusable whole-cell biocatalyst.
    Inokuma K; Toyohara K; Hamada T; Kondo A; Hasunuma T
    Sci Rep; 2024 Aug; 14(1):18540. PubMed ID: 39122907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production.
    Schwaiger KN; Voit A; Wiltschi B; Nidetzky B
    Microb Cell Fact; 2022 Apr; 21(1):61. PubMed ID: 35397553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production.
    Wang L; Zheng P; Hu M; Tao Y
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35289917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Production of 2-O-α-D-Glucosyl Glycerol Catalyzed by an Engineered Sucrose Phosphorylase from Bifidobacterium longum.
    Lei J; Tang K; Zhang T; Li Y; Gao Z; Jia H
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5274-5291. PubMed ID: 35731443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development.
    Sigg A; Klimacek M; Nidetzky B
    Biotechnol Bioeng; 2024 Feb; 121(2):580-592. PubMed ID: 37983971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium.
    Reichenbecher M; Lottspeich F; Bronnenmeier K
    Eur J Biochem; 1997 Jul; 247(1):262-7. PubMed ID: 9249035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae.
    Sadie CJ; Rose SH; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2011 May; 90(4):1373-80. PubMed ID: 21336923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose.
    Schwaiger KN; Voit A; Dobiašová H; Luley C; Wiltschi B; Nidetzky B
    Biotechnol J; 2020 Nov; 15(11):e2000063. PubMed ID: 32668097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.
    Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H
    Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose.
    Ubiparip Z; Moreno DS; Beerens K; Desmet T
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8327-8337. PubMed ID: 32803296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking a Fine Line with Sucrose Phosphorylase: Efficient Single-Step Biocatalytic Production of l-Ascorbic Acid 2-Glucoside from Sucrose.
    Gudiminchi RK; Nidetzky B
    Chembiochem; 2017 Jul; 18(14):1387-1390. PubMed ID: 28426168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling-up the synthesis of myristate glucose ester catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst.
    Guo D; Jin Z; Xu Y; Wang P; Lin Y; Han S; Zheng S
    Enzyme Microb Technol; 2015; 75-76():30-6. PubMed ID: 26047913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases.
    Schwaiger KN; Nidetzky B
    Microb Cell Fact; 2022 Dec; 21(1):265. PubMed ID: 36536394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate.
    Sena RO; Carneiro C; Moura MVH; Brêda GC; Pinto MCC; Fé LXSGM; Fernandez-Lafuente R; Manoel EA; Almeida RV; Freire DMG; Cipolatti EP
    Int J Biol Macromol; 2021 Oct; 189():734-743. PubMed ID: 34455007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli.
    Kim YK; Kitaoka M; Krishnareddy M; Mori Y; Hayashi K
    J Biochem; 2002 Aug; 132(2):197-203. PubMed ID: 12153715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.
    Wanarska M; Kur J
    Microb Cell Fact; 2012 Aug; 11():113. PubMed ID: 22917022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of synthesis of alkyl beta-glycosides using sucrose as sugar donor.
    Kino K; Satake R; Morimatsu T; Kuratsu S; Shimizu Y; Sato M; Kirimura K
    Biosci Biotechnol Biochem; 2008 Sep; 72(9):2415-7. PubMed ID: 18776673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.