These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39123562)
1. Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000-2022? Zhang T; Hu Q; Li T; Gao X; Zhou Y; Liu X; Lun F Foods; 2024 Jul; 13(15):. PubMed ID: 39123562 [TBL] [Abstract][Full Text] [Related]
2. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961-2017. Bai Z; Ma W; Zhao H; Guo M; Oenema O; Smith P; Velthof G; Liu X; Hu C; Wang P; Zhang N; Liu L; Guo S; Fan X; Winiwarter W; Ma L Nat Food; 2021 Oct; 2(10):780-791. PubMed ID: 37117983 [TBL] [Abstract][Full Text] [Related]
3. Is the boom in staple crop production attributed to expanded cropland or improved yield? A comparative analysis between China and India. Zhai J; Pu L; Lu Y; Huang S Sci Total Environ; 2024 Jul; 933():173151. PubMed ID: 38735335 [TBL] [Abstract][Full Text] [Related]
4. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630 [TBL] [Abstract][Full Text] [Related]
5. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade. Zhuo L; Mekonnen MM; Hoekstra AY Environ Int; 2016 Sep; 94():211-223. PubMed ID: 27262784 [TBL] [Abstract][Full Text] [Related]
6. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Hu Q; Xiang M; Chen D; Zhou J; Wu W; Song Q Sci Total Environ; 2020 Dec; 746():141035. PubMed ID: 32771755 [TBL] [Abstract][Full Text] [Related]
7. Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. de Ruiter H; Macdiarmid JI; Matthews RB; Kastner T; Smith P J R Soc Interface; 2016 Jan; 13(114):20151001. PubMed ID: 26740576 [TBL] [Abstract][Full Text] [Related]
8. Trade-induced displacement of impacts of global crop production on oxygen depletion in marine ecosystems. Bidoglio GA; Mueller ND; Kastner T Sci Total Environ; 2023 May; 873():162226. PubMed ID: 36801408 [TBL] [Abstract][Full Text] [Related]
9. Assessing the impact of food trade centric on land, water, and food security in South Korea. Odey G; Adelodun B; Lee S; Adeyemi KA; Choi KS J Environ Manage; 2023 Apr; 332():117319. PubMed ID: 36731406 [TBL] [Abstract][Full Text] [Related]
10. Spatial heterogeneity of changes in cropland ecosystem water use efficiency and responses to drought in China. Zhao A; Yu Q; Cheng D; Zhang A Environ Sci Pollut Res Int; 2022 Feb; 29(10):14806-14818. PubMed ID: 34622399 [TBL] [Abstract][Full Text] [Related]
11. Cropland redistribution to marginal lands undermines environmental sustainability. Kuang W; Liu J; Tian H; Shi H; Dong J; Song C; Li X; Du G; Hou Y; Lu D; Chi W; Pan T; Zhang S; Hamdi R; Yin Z; Yan H; Yan C; Wu S; Li R; Yang J; Dou Y; Wu W; Liang L; Xiang B; Yang S Natl Sci Rev; 2022 Jan; 9(1):nwab091. PubMed ID: 35070327 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the efficiency and drivers of complemented cropland in Southwest China over the past 30 years from the perspective of cropland abandonment. Lu D; Wang Z; Li X; Zhou Y J Environ Manage; 2024 Feb; 351():119909. PubMed ID: 38154224 [TBL] [Abstract][Full Text] [Related]
13. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Vijay V; Armsworth PR Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468666 [TBL] [Abstract][Full Text] [Related]
14. One-third of cropland within protected areas could be retired in China for inferior sustainability and effects. Yang R; Xiao W; Ye Y; Wang K; Dong X; Chen S Sci Total Environ; 2023 Dec; 905():167084. PubMed ID: 37734603 [TBL] [Abstract][Full Text] [Related]
15. Structural Evolution of Global Soybean Trade Network and the Implications to China. Wang M; Liu D; Wang Z; Li Y Foods; 2023 Apr; 12(7):. PubMed ID: 37048371 [TBL] [Abstract][Full Text] [Related]
16. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries. Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301 [TBL] [Abstract][Full Text] [Related]
17. Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States. Jiang C; Guan K; Khanna M; Chen L; Peng J Environ Sci Technol; 2021 Aug; 55(15):10794-10804. PubMed ID: 34297551 [TBL] [Abstract][Full Text] [Related]
18. Production-Based and Consumption-Based Accounting of Global Cropland Soil Erosion. Cui H; Wang Z; Yan H; Li C; Jiang X; Wang L; Liu G; Hu Y; Yu S; Shi Z Environ Sci Technol; 2022 Jul; 56(14):10465-10473. PubMed ID: 35762897 [TBL] [Abstract][Full Text] [Related]
19. Virtual water trade of agri-food products: Evidence from italian-chinese relations. Lamastra L; Miglietta PP; Toma P; De Leo F; Massari S Sci Total Environ; 2017 Dec; 599-600():474-482. PubMed ID: 28482305 [TBL] [Abstract][Full Text] [Related]
20. Increased global cropland greening as a response to the unusual reduction in atmospheric PM₂.₅ concentrations during the COVID-19 lockdown period. Patel VK; Kuttippurath J; Kashyap R Chemosphere; 2024 Jun; 358():142147. PubMed ID: 38677610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]