These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39123988)

  • 1. Design of Wideband Flextensional Hydrophone.
    Kim G; Kim D; Roh Y
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of a High-Sensitivity and Wideband Cymbal Hydrophone.
    Kim D; Roh Y
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and Experimental Studies on Sensitivity and Bandwidth of Thickness-Mode Driving Hydrophone Utilizing A 2-2 Piezoelectric Single Crystal Composite.
    Je Y; Sim M; Cho Y; Lee SG; Seo HS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research and Fabrication of Broadband Ring Flextensional Underwater Transducer.
    Hu J; Hong L; Yin L; Lan Y; Sun H; Guo R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Underwater Testing of a Vector Hydrophone Comprising a Triaxial Piezoelectric Accelerometer and Spherical Hydrophone.
    Roh T; Yeo HG; Joh C; Roh Y; Kim K; Seo HS; Choi H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique.
    Devaraju V; Lewin PA; Bleeker H
    J Ultrasound Med; 2002 Mar; 21(3):261-8. PubMed ID: 11883536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones.
    Wear KA; Shah A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topology optimization design of flextensional actuators.
    Silva EN; Nishiwaki S; Kikuchi N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):657-71. PubMed ID: 18238594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
    Lewin PA; Bautista R; Devaraju V
    Ultrasound Med Biol; 1999 Sep; 25(7):1131-7. PubMed ID: 10574344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Concave Stave on Class I Barrel-Stave Flextensional Transducer.
    Teng D; Liu X; Gao F
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design considerations and performance of MEMS acoustoelectric ultrasound detectors.
    Wang Z; Ingram P; Greenlee CL; Olafsson R; Norwood RA; Witte RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1906-16. PubMed ID: 24658721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Importance of Consistent Insonation Conditions During Hydrophone Calibration and Use.
    Rajagopal S; Robinson SP; Ablitt J; Miloro P; Wang L; Zeqiri B; Hurrell A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):120-127. PubMed ID: 36094977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Conformal Driving Class IV Flextensional Transducer.
    Zhou T; Lan Y; Zhang Q; Yuan J; Li S; Lu W
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniature multimode monolithic flextensional transducers.
    Hladky-Hennion AC; Uzgur AE; Markley DC; Safari A; Cochran JK; Newnham RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):1992-2000. PubMed ID: 18019236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.
    Liu Y; Wear KA; Harris GR
    Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modelling of dense and porous piezoceramic disc hydrophones.
    Ramesh R; Kara H; Bowen CR
    Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A liquid column resonance transducer driven by Class IV flextensional transducer.
    Li S; Lan Y; Hong L
    J Acoust Soc Am; 2023 Jul; 154(1):401-410. PubMed ID: 37470758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.