These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39123988)
21. Design and Implementation of a Four-Unit Array Piezoelectric Bionic MEMS Vector Hydrophone. Shi S; Zhang X; Wang Z; Ma L; Kang K; Pang Y; Ma H; Hu J Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675335 [TBL] [Abstract][Full Text] [Related]
22. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide. Rajagopal S; Zeqiri B; Gélat PN IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021 [TBL] [Abstract][Full Text] [Related]
23. Absolute calibration of hydrophones immersed in sandy sediment. Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635 [TBL] [Abstract][Full Text] [Related]
24. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz. Oliveira EG; Costa-Felix RP; Machado JC Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371 [TBL] [Abstract][Full Text] [Related]
26. Design and Simulation of Flexible Underwater Acoustic Sensor Based on 3D Buckling Structure. Liu G; Cao W; Zhang G; Wang Z; Tan H; Miao J; Li Z; Zhang W; Wang R Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945387 [TBL] [Abstract][Full Text] [Related]
27. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones. Wear K; Liu Y; Gammell PM; Maruvada S; Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):152-64. PubMed ID: 25585399 [TBL] [Abstract][Full Text] [Related]
28. In-air and underwater performance and finite element analysis of a flextensional device having electrostrictive poly(vinylidene fluoride-trifluoroethylene) polymers as the active driving element. Xia F; Cheng ZY; Zhang Q IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):932-40. PubMed ID: 12894926 [TBL] [Abstract][Full Text] [Related]
29. Capacitive Low-Frequency Hydrophone Based on Micronanostructured Iontronic Hydrogel for Underwater Monitoring. Zhao J; Hu Q; Fu T; Liu H; Yao Y; Zhou W; Zhu Z ACS Nano; 2024 Aug; 18(33):22010-22020. PubMed ID: 39106474 [TBL] [Abstract][Full Text] [Related]
30. A multiple-frequency hydrophone calibration technique. Smith RA; Bacon DR J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922 [TBL] [Abstract][Full Text] [Related]
31. Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry. Harris GR; Gammell PM; Lewin PA; Radulescu EG Ultrasonics; 2004 Apr; 42(1-9):349-53. PubMed ID: 15047310 [TBL] [Abstract][Full Text] [Related]
32. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms. Hurrell AM; Rajagopal S IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961 [TBL] [Abstract][Full Text] [Related]
33. Time delay spectrometry for hydrophone calibrations below 1 MHz. Gammell PM; Harris GR J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913 [TBL] [Abstract][Full Text] [Related]
34. Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filter. Wang Z; Hu Y; Meng Z; Ni M Opt Lett; 2008 Jan; 33(1):37-9. PubMed ID: 18157250 [TBL] [Abstract][Full Text] [Related]
35. Numerical and experimental investigation of a variable-curvature shell class I flextensional transducer. Li D; Lan Y; Zhou T J Acoust Soc Am; 2023 Sep; 154(3):1800-1812. PubMed ID: 37725521 [TBL] [Abstract][Full Text] [Related]
36. High-Sensitivity Cuboid Interferometric Fiber-Optic Hydrophone Based on Planar Rectangular Film Sensing. Wang W; Pei Y; Ye L; Song K Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182757 [TBL] [Abstract][Full Text] [Related]
37. The Development of the Differential MEMS Vector Hydrophone. Zhang G; Liu M; Shen N; Wang X; Zhang W Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28594384 [TBL] [Abstract][Full Text] [Related]
38. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields. Huttunen T; Kaipio JP; Hynynen K IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632 [TBL] [Abstract][Full Text] [Related]
39. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz. Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665 [TBL] [Abstract][Full Text] [Related]
40. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes. Selfridge A; Lewin PA IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]