These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 39123995)

  • 1. Performance Correction and Parameters Identification Considering Non-Uniform Electric Field in Cantilevered Piezoelectric Energy Harvesters.
    Wang X; Liu H; Zheng H; Liu G; Xu D
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromechanical coupling and output efficiency of piezoelectric bending actuators.
    Wang QM; Du XH; Xu B; Cross LE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):638-46. PubMed ID: 18238464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.
    Karami MA; Bilgen O; Inman DJ; Friswell MI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1508-20. PubMed ID: 21768034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators.
    Nabawy MRA; Crowther WJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.
    Daniels A; Zhu M; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2626-33. PubMed ID: 24284255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse (d
    Rahmati AH; Yang S; Bauer S; Sharma P
    Soft Matter; 2018 Dec; 15(1):127-148. PubMed ID: 30539952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive equations of symmetrical triple layer piezoelectric benders.
    Wang QM; Cross LE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1343-51. PubMed ID: 18244330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Frequency Up-Conversion Piezoelectric Energy Harvester Shunted to a Synchronous Electric Charge Extraction Circuit.
    Peng X; Tang H; Li Z; Liang J; Yu L; Hu G
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Energy-Harvesting Performance of Magneto-Mechano-Electric Generators through Optimization of the Interfacial Layer.
    Kim SH; Thakre A; Patil DR; Park SH; Listyawan TA; Park N; Hwang GT; Jang J; Kim KH; Ryu J
    ACS Appl Mater Interfaces; 2021 May; 13(17):19983-19991. PubMed ID: 33819008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Multilayered (Bi,Sc)O
    Kim BS; Ji JH; Kim HT; Kim SJ; Koh JH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling.
    Shi R; Chen J; Ma T; Li C; Zhang W; Ye D
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester.
    Su WJ; Tseng CH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.