These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39124000)
1. L Test Subtask Segmentation for Lower-Limb Amputees Using a Random Forest Algorithm. McCreath Frangakis AL; Lemaire ED; Burger H; Baddour N Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39124000 [TBL] [Abstract][Full Text] [Related]
2. Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests. Juneau P; Baddour N; Burger H; Bavec A; Lemaire ED Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270892 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Decision Tree and Long Short-Term Memory Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations. Juneau P; Baddour N; Burger H; Bavec A; Lemaire ED Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770281 [TBL] [Abstract][Full Text] [Related]
4. Automated step detection with 6-minute walk test smartphone sensors signals for fall risk classification in lower limb amputees. Juneau P; Lemaire ED; Bavec A; Burger H; Baddour N PLOS Digit Health; 2022 Aug; 1(8):e0000088. PubMed ID: 36812591 [TBL] [Abstract][Full Text] [Related]
5. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications. Shawen N; Lonini L; Mummidisetty CK; Shparii I; Albert MV; Kording K; Jayaraman A JMIR Mhealth Uhealth; 2017 Oct; 5(10):e151. PubMed ID: 29021127 [TBL] [Abstract][Full Text] [Related]
6. Predicting mobility outcome in lower limb amputees with motor ability tests used in early rehabilitation. Spaan MH; Vrieling AH; van de Berg P; Dijkstra PU; van Keeken HG Prosthet Orthot Int; 2017 Apr; 41(2):171-177. PubMed ID: 27770064 [TBL] [Abstract][Full Text] [Related]
7. Establishing the Turkish version of the SIGAM mobility scale, and determining its validity and reliability in lower extremity amputees. Yilmaz H; Gafuroğlu Ü; Ryall N; Yüksel S Disabil Rehabil; 2018 Feb; 40(3):346-352. PubMed ID: 27868449 [TBL] [Abstract][Full Text] [Related]
8. Fall risk classification for people with lower extremity amputations using random forests and smartphone sensor features from a 6-minute walk test. Daines KJF; Baddour N; Burger H; Bavec A; Lemaire ED PLoS One; 2021; 16(4):e0247574. PubMed ID: 33901209 [TBL] [Abstract][Full Text] [Related]
9. Subtask Segmentation of Timed Up and Go Test for Mobility Assessment of Perioperative Total Knee Arthroplasty. Hsieh CY; Huang HY; Liu KC; Chen KH; Hsu SJ; Chan CT Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167444 [TBL] [Abstract][Full Text] [Related]
10. A pilot study examining measures of balance and mobility in children with unilateral lower-limb amputation. Feick E; Hamilton PR; Luis M; Corbin M; Salback NM; Torres-Moreno R; Andrysek J Prosthet Orthot Int; 2016 Feb; 40(1):65-74. PubMed ID: 25515343 [TBL] [Abstract][Full Text] [Related]
11. The development and internal consistency of the comprehensive lower limb amputee socket survey in active lower limb amputees. Gailey R; Kristal A; Lucarevic J; Harris S; Applegate B; Gaunaurd I Prosthet Orthot Int; 2019 Feb; 43(1):80-87. PubMed ID: 30095355 [TBL] [Abstract][Full Text] [Related]
12. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement. Segal AD; Klute GK J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315 [TBL] [Abstract][Full Text] [Related]
13. Understanding responses to gait instability from plantar pressure measurement and the relationship to balance and mobility in lower-limb amputees. Howcroft J; Lemaire ED; Kofman J; Kendell C Clin Biomech (Bristol); 2016 Feb; 32():241-8. PubMed ID: 26651474 [TBL] [Abstract][Full Text] [Related]
14. Transfemoral amputee recovery strategies following trips to their sound and prosthesis sides throughout swing phase. Shirota C; Simon AM; Kuiken TA J Neuroeng Rehabil; 2015 Sep; 12():79. PubMed ID: 26353775 [TBL] [Abstract][Full Text] [Related]
15. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. Ng G; Andrysek J Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772451 [TBL] [Abstract][Full Text] [Related]
16. The Component Timed-Up-and-Go test: the utility and psychometric properties of using a mobile application to determine prosthetic mobility in people with lower limb amputations. Clemens SM; Gailey RS; Bennett CL; Pasquina PF; Kirk-Sanchez NJ; Gaunaurd IA Clin Rehabil; 2018 Mar; 32(3):388-397. PubMed ID: 28862042 [TBL] [Abstract][Full Text] [Related]
17. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement. Segal AD; Shofer JB; Klute GK J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221 [TBL] [Abstract][Full Text] [Related]
18. Mobility Analysis of AmpuTees (MAAT 4): classification tree analysis for probability of lower limb prosthesis user functional potential. Wurdeman SR; Stevens PM; Campbell JH Disabil Rehabil Assist Technol; 2020 Feb; 15(2):211-218. PubMed ID: 30741573 [No Abstract] [Full Text] [Related]
19. Portable haptic device for lower limb amputee gait feedback: Assessing static and dynamic perceptibility. Husman MAB; Maqbool HF; Awad MI; Dehghani-Sanij AA IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1562-1566. PubMed ID: 28814042 [TBL] [Abstract][Full Text] [Related]
20. The potential for non-invasive brain stimulation to improve function after amputation. G Hordacre B; C Ridding M; V Bradnam L Disabil Rehabil; 2016 Jul; 38(15):1521-32. PubMed ID: 26517542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]