These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 39124036)

  • 1. Exploring Feature Selection and Classification Techniques to Improve the Performance of an Electroencephalography-Based Motor Imagery Brain-Computer Interface System.
    Kabir MH; Akhtar NI; Tasnim N; Miah ASM; Lee HS; Jang SW; Shin J
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature extraction of four-class motor imagery EEG signals based on functional brain network.
    Ai Q; Chen A; Chen K; Liu Q; Zhou T; Xin S; Ji Z
    J Neural Eng; 2019 Apr; 16(2):026032. PubMed ID: 30699389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel feature extraction method PSS-CSP for binary motor imagery - based brain-computer interfaces.
    Chen A; Sun D; Gao X; Zhang D
    Comput Biol Med; 2024 Jul; 177():108619. PubMed ID: 38796879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System.
    Feng JK; Jin J; Daly I; Zhou J; Niu Y; Wang X; Cichocki A
    Comput Intell Neurosci; 2019; 2019():8068357. PubMed ID: 31214255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection.
    Li Z; Tan X; Li X; Yin L
    Med Biol Eng Comput; 2024 Oct; 62(10):2961-2973. PubMed ID: 38724769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification.
    Hu H; Pu Z; Li H; Liu Z; Wang P
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.
    Miao M; Zeng H; Wang A; Zhao C; Liu F
    J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
    Zhang Y; Wang Y; Jin J; Wang X
    Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
    Luo J; Wang J; Xu R; Xu K
    J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features.
    Ding X; Yang L; Li C
    Math Biosci Eng; 2023 May; 20(7):12454-12471. PubMed ID: 37501450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO.
    Huang W; Liu X; Yang W; Li Y; Sun Q; Kong X
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.