These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39124345)
1. Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments. Goetjes V; Zarges JC; Heim HP Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124345 [TBL] [Abstract][Full Text] [Related]
2. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. Valapa RB; G P; Katiyar V Int J Biol Macromol; 2016 Aug; 89():70-80. PubMed ID: 27095433 [TBL] [Abstract][Full Text] [Related]
3. Properties and Degradation Performances of Biodegradable Poly(lactic acid)/Poly(3-hydroxybutyrate) Blends and Keratin Composites. Danko M; Mosnáčková K; Vykydalová A; Kleinová A; Puškárová A; Pangallo D; Bujdoš M; Mosnáček J Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451232 [TBL] [Abstract][Full Text] [Related]
4. Properties and Characterization of a PLA-Chitin-Starch Biodegradable Polymer Composite. Olaiya NG; Surya I; Oke PK; Rizal S; Sadiku ER; Ray SS; Farayibi PK; Hossain MS; Abdul Khalil HPS Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614623 [TBL] [Abstract][Full Text] [Related]
5. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites. Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y Int J Biol Macromol; 2024 Aug; 275(Pt 1):133656. PubMed ID: 38969048 [TBL] [Abstract][Full Text] [Related]
6. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films. Wang X; Jia Y; Liu Z; Miao J Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960938 [TBL] [Abstract][Full Text] [Related]
7. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Lv S; Zhang Y; Gu J; Tan H Int J Biol Macromol; 2018 Jul; 113():338-344. PubMed ID: 29481951 [TBL] [Abstract][Full Text] [Related]
8. Correlation between the activation energy of PLA respectively PLA/starch composites and mechanical properties with regard to differ accelerated aging conditions. Reit M; Zarges JC; Heim HP Biopolymers; 2024 May; 115(3):e23571. PubMed ID: 38385628 [TBL] [Abstract][Full Text] [Related]
9. Silane modified starch for compatible reactive blend with poly(lactic acid). Jariyasakoolroj P; Chirachanchai S Carbohydr Polym; 2014 Jun; 106():255-63. PubMed ID: 24721076 [TBL] [Abstract][Full Text] [Related]
10. Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Whulanza Y; Azadi A; Supriadi S; Rahman SF; Chalid M; Irsyad M; Nadhif MH; Kreshanti P Heliyon; 2022 Jan; 8(1):e08600. PubMed ID: 35028440 [TBL] [Abstract][Full Text] [Related]
11. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). Liu X; Wang T; Chow LC; Yang M; Mitchell JW Int J Polym Sci; 2014; 2014():. PubMed ID: 25717339 [TBL] [Abstract][Full Text] [Related]
12. Thermal and mechanical properties of polyethylene glycol (PEG)-modified lignin/polylactic acid (PLA) biocomposites. Ju Z; Brosse N; Hoppe S; Wang Z; Ziegler-Devin I; Zhang H; Shu B Int J Biol Macromol; 2024 Mar; 262(Pt 1):129997. PubMed ID: 38340934 [TBL] [Abstract][Full Text] [Related]
13. Structure Optimization of Cellulose Nanofibers/Poly(Lactic Acid) Composites by the Sizing of AKD. Li L; Cao M; Li J; Wang C; Li S Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883622 [TBL] [Abstract][Full Text] [Related]
14. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Chotiprayon P; Chaisawad B; Yoksan R Int J Biol Macromol; 2020 Aug; 156():960-968. PubMed ID: 32330500 [TBL] [Abstract][Full Text] [Related]
15. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. Zuo YF; Gu J; Qiao Z; Tan H; Cao J; Zhang Y Int J Biol Macromol; 2015 Jan; 72():391-402. PubMed ID: 25192854 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates. Li S; Xia J; Xu Y; Yang X; Mao W; Huang K Carbohydr Polym; 2016 May; 142():250-8. PubMed ID: 26917397 [TBL] [Abstract][Full Text] [Related]
17. Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites. Lv S; Zhang Y; Tan H Waste Manag; 2019 Mar; 87():335-344. PubMed ID: 31109534 [TBL] [Abstract][Full Text] [Related]
18. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid). Manavitehrani I; Fathi A; Wang Y; Maitz PK; Dehghani F ACS Appl Mater Interfaces; 2015 Oct; 7(40):22421-30. PubMed ID: 26376751 [TBL] [Abstract][Full Text] [Related]
19. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering. Chávez-Montes WM; González-Sánchez G; Flores-Gallardo SG Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979248 [TBL] [Abstract][Full Text] [Related]
20. Performance, rheological behavior and enzymatic degradation of poly(lactic acid)/modified fulvic acid composites. Zhang H; Zhen W Int J Biol Macromol; 2019 Oct; 139():181-190. PubMed ID: 31369784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]