These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39124444)
1. Bandgap Calculation and Experimental Analysis of Piezoelectric Phononic Crystals Based on Partial Differential Equations. Song C; Han Y; Jiang Y; Xie M; Jiang Y; Tang K Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124444 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Bandgap Properties of a Piezoelectric Phononic Crystal Plate Based on the PDE Module in COMSOL. Liu G; Qian D Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793396 [TBL] [Abstract][Full Text] [Related]
3. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure. Zhang S; Qian D; Zhang Z; Ge H Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Vibration-Damping Characteristics and Parameter Optimization of Cylindrical Cavity Double-Plate Phononic Crystal. Song C; Yang Q; Xiong X; Yin R; Jia B; Liang Y; Fang H Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444919 [TBL] [Abstract][Full Text] [Related]
5. Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates. Chiou MJ; Lin YC; Ono T; Esashi M; Yeh SL; Wu TT Ultrasonics; 2014 Sep; 54(7):1984-90. PubMed ID: 24909597 [TBL] [Abstract][Full Text] [Related]
6. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain. Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986 [TBL] [Abstract][Full Text] [Related]
7. An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure. Xiang H; Chai Z; Kou W; Zhong H; Xiang J Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257453 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental analyses of tunable Fabry-Perot resonators using piezoelectric phononic crystals. Ponge MF; Dubus B; Granger C; Vasseur JO; Thi MP; Hladky-Hennion AC IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1114-21. PubMed ID: 26067046 [TBL] [Abstract][Full Text] [Related]
9. Advances in Tunable Bandgaps of Piezoelectric Phononic Crystals. Wang Y; Xu X; Li L Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763562 [TBL] [Abstract][Full Text] [Related]
10. Sandwich Plate Structure Periodically Attached by S-Shaped Oscillators for Low Frequency Ship Vibration Isolation. Shen C; Huang J; Zhang Z; Xue J; Qian D Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984347 [TBL] [Abstract][Full Text] [Related]
11. Spider Web-Like Phononic Crystals for Piezoelectric MEMS Resonators to Reduce Acoustic Energy Dissipation. Bao FH; Wu XQ; Zhou X; Wu QD; Zhang XS; Bao JF Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31546943 [TBL] [Abstract][Full Text] [Related]
12. Design of Graphene Phononic Crystals for Heat Phonon Engineering. Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087 [TBL] [Abstract][Full Text] [Related]
13. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers. Guo X; Wei P; Lan M; Li L Ultrasonics; 2016 Aug; 70():158-71. PubMed ID: 27179141 [TBL] [Abstract][Full Text] [Related]
14. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Ash BJ; Worsfold SR; Vukusic P; Nash GR Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535 [TBL] [Abstract][Full Text] [Related]
15. Multi-Material Radial Phononic Crystals to Improve the Quality Factor of Piezoelectric MEMS Resonators. Yang Q; Gao T; Zhu C; Li L Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258139 [TBL] [Abstract][Full Text] [Related]
16. Slow sound mode prediction and band structure calculation in 1D phononic crystal nanobeams using an artificial neural network. Hsiao FL; Yang YT; Lin WK; Tsai YP Sci Prog; 2024; 107(3):368504241272461. PubMed ID: 39109937 [TBL] [Abstract][Full Text] [Related]
17. Electro-mechanical coupling band gaps of a piezoelectric phononic crystal Timoshenko nanobeam with surface effects. Qian D; Wu J; He F Ultrasonics; 2021 Jan; 109():106225. PubMed ID: 32977292 [TBL] [Abstract][Full Text] [Related]
18. Topological Design of Two-Dimensional Phononic Crystals Based on Genetic Algorithm. Wen X; Kang L; Sun X; Song T; Qi L; Cao Y Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629900 [TBL] [Abstract][Full Text] [Related]
19. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals. Ponge MF; Croƫnne C; Vasseur JO; Bou Matar O; Hladky-Hennion AC; Dubus B J Acoust Soc Am; 2016 Jun; 139(6):3288. PubMed ID: 27369153 [TBL] [Abstract][Full Text] [Related]
20. Band structure calculation of SH waves in nanoscale multilayered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects. Yan Z; Wei C; Zhang C Ultrasonics; 2017 Jan; 73():169-180. PubMed ID: 27662480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]