These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39124494)

  • 1. Evaluation of Shear Strength and Stiffness of a Loess-Sand Mixture in Triaxial and Unconfined Compression Tests.
    Tankiewicz M; Kowalska M; Mońka J
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Changes to Triaxial Shear Strength Parameters and Microstructure of Yili Loess with Drying-Wetting Cycles.
    Hao R; Zhang Z; Guo Z; Huang X; Lv Q; Wang J; Liu T
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Undrained shear behavior of silty sand with a constant state parameter considering initial stress anisotropy effect.
    Li P; Zhu C; Pan X; Lv B; Pan K
    Sci Rep; 2024 Jan; 14(1):2213. PubMed ID: 38278873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Clay on the Shear Strength of Microbially Cured Sand Particles.
    Feng D; Gao H; Li Z; Liang S
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing.
    Ramaiah BJ; Ramana GV
    Waste Manag; 2017 May; 63():366-379. PubMed ID: 28139366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of clay grains on the shear properties of unsaturated loess and microscopic mechanism.
    Hao J; Zhu S; Cheng P; Ren G; Du L; Li Q; Zhao S
    Sci Rep; 2024 Sep; 14(1):22666. PubMed ID: 39349695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation.
    Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Hirvonen J; Helminen HJ; Jurvelin JS
    J Biomech; 2002 Jul; 35(7):903-9. PubMed ID: 12052392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence mechanism of structure on shear mechanical deformation characteristics of loess-steel interface.
    Wei YZ; Yao ZH; Chong XL; Zhang JH; Zhang J
    PLoS One; 2022; 17(2):e0263676. PubMed ID: 35130325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength and deformation characteristics of waste mud-solidified soil.
    Tang Y; Jiang H; Yang Z; Xiong S; Xu G; Chen J; Shu S
    Sci Rep; 2024 Jul; 14(1):16976. PubMed ID: 39043781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Shear Strength and Erosion Resistance of Sand Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP).
    Li G; Zhu Q; Liu J; Liu C; Zhang J
    Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure of unsaturated loess and its influence on strength characteristics.
    Wei YZ; Yao ZH; Chong XL; Zhang JH; Zhang J
    Sci Rep; 2022 Jan; 12(1):1502. PubMed ID: 35087133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Improving Loess Properties with Permeable Polymer Materials.
    Mu J; Zhuang J; Kong J; Wang S; Wang J; Zheng J; Fu Y; Du C
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of conglomeration gradation on loess shear strength with different water content.
    Kong D; Wan R; Zhao C; Dai J; Dong T; Ni W; Gao J; Wang T
    Sci Prog; 2021; 104(2):368504211010581. PubMed ID: 33881942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on shear strength of saturated remolded loess.
    Lai J; Liu Y; Xiang Y; Wang W; Xu J; Cao B; Zhao D; Wei W; Bao H; Yan C; Lan H
    PLoS One; 2022; 17(7):e0271266. PubMed ID: 35834541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and Influencing Mechanisms of the Yili Loess Mechanical Properties under Combined Wetting-Drying and Freeze-Thaw Cycling.
    Zhang Y; Zhang Z; Hu W; Zhang Y
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Sisal Fiber and Polyurethane Admixture on the Strength and Mechanical Behavior of Sand.
    Wei J; Kong F; Liu J; Chen Z; Kanungo DP; Lan X; Jiang C; Shi X
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests.
    Le NH; Abriak NE; Binetruy C; Benzerzour M; Nguyen ST
    Waste Manag; 2017 Jul; 65():37-46. PubMed ID: 28392120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties and Constitutive Model of the Cement-Improved Loess under Freeze-Thaw Conditions.
    Niu Y; Hou L; Qin Z; Wang X; Zhang Y; Shao W; Jiang G; Guo X; Zhang J
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.