These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 39124879)

  • 1. Asymmetric Sulfoxidations Catalyzed by Bacterial Flavin-Containing Monooxygenases.
    de Gonzalo G; Coto-Cid JM; Lončar N; Fraaije MW
    Molecules; 2024 Jul; 29(15):. PubMed ID: 39124879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale.
    de Gonzalo G; Franconetti A
    Enzyme Microb Technol; 2018 Jun; 113():24-28. PubMed ID: 29602383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO).
    Lončar N; Fiorentini F; Bailleul G; Savino S; Romero E; Mattevi A; Fraaije MW
    Appl Microbiol Biotechnol; 2019 Feb; 103(4):1755-1764. PubMed ID: 30607493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign.
    de Gonzalo G; Smit C; Jin J; Minnaard AJ; Fraaije MW
    Chem Commun (Camb); 2011 Oct; 47(39):11050-2. PubMed ID: 21901197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations.
    Bordewick S; Beier A; Balke K; Bornscheuer UT
    Enzyme Microb Technol; 2018 Feb; 109():31-42. PubMed ID: 29224624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase.
    Rioz-Martínez A; Kopacz M; de Gonzalo G; Torres Pazmiño DE; Gotor V; Fraaije MW
    Org Biomol Chem; 2011 Mar; 9(5):1337-41. PubMed ID: 21225061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations.
    Mojr V; Buděšínský M; Cibulka R; Kraus T
    Org Biomol Chem; 2011 Nov; 9(21):7318-26. PubMed ID: 21879132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of racemic sulfoxides with high productivity and enantioselectivity by a Rhodococcus sp. strain as an alternative to biooxidation of prochiral sulfides for efficient production of enantiopure sulfoxides.
    Li AT; Yu HL; Pan J; Zhang JD; Xu JH; Lin GQ
    Bioresour Technol; 2011 Jan; 102(2):1537-42. PubMed ID: 20810278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prochiral sulfides as in vitro probes for multiple forms of the flavin-containing monooxygenase.
    Rettie AE; Meier GP; Sadeque AJ
    Chem Biol Interact; 1995 Apr; 96(1):3-15. PubMed ID: 7720102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cp*Rh(bpy)(H2O)]2+ as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer-Villiger monooxygenases.
    de Gonzalo G; Ottolina G; Carrea G; Fraaije MW
    Chem Commun (Camb); 2005 Aug; (29):3724-6. PubMed ID: 16027924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production.
    Lončar N; van Beek HL; Fraaije MW
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric High-Throughput Screening Method for Directed Evolution of Prazole Sulfide Monooxygenase.
    Liu F; Geng Q; Zhao C; Ren SM; Yu HL; Xu JH
    Chembiochem; 2022 Aug; 23(16):e202200228. PubMed ID: 35639013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prochiral sulfoxidation as a probe for flavin-containing monooxygenases.
    Yeung CK; Rettie AE
    Methods Mol Biol; 2006; 320():163-72. PubMed ID: 16719389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin catalyzed oxidations of sulfides and amines with molecular oxygen.
    Imada Y; Iida H; Ono S; Murahashi S
    J Am Chem Soc; 2003 Mar; 125(10):2868-9. PubMed ID: 12617641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides.
    Feingersch R; Shainsky J; Wood TK; Fishman A
    Appl Environ Microbiol; 2008 Mar; 74(5):1555-66. PubMed ID: 18192418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin-containing monooxygenases in plants: looking beyond detox.
    Schlaich NL
    Trends Plant Sci; 2007 Sep; 12(9):412-8. PubMed ID: 17765596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase.
    Johnson SB; Li H; Valentino H; Sobrado P
    Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.