These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of water in protein aggregation and amyloid polymorphism. Thirumalai D; Reddy G; Straub JE Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818 [TBL] [Abstract][Full Text] [Related]
3. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers. Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359 [TBL] [Abstract][Full Text] [Related]
4. Computational Study on the Assembly of Amyloid β-Peptides in the Hydrophobic Environment. Qu L; Fudo S; Matsuzaki K; Hoshino T Chem Pharm Bull (Tokyo); 2019; 67(9):959-965. PubMed ID: 31474736 [TBL] [Abstract][Full Text] [Related]
7. Identifying the Template for Oligomer to Fibril Conversion for Amyloid-β (1-42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics. Saha D; Jana B Chemphyschem; 2022 Dec; 23(24):e202200393. PubMed ID: 36052514 [TBL] [Abstract][Full Text] [Related]
9. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Yu X; Wang Q; Lin Y; Zhao J; Zhao C; Zheng J Langmuir; 2012 Apr; 28(16):6595-605. PubMed ID: 22468636 [TBL] [Abstract][Full Text] [Related]
10. Targeting the Amyloid-β Fibril Surface with a Constrained Helical Peptide Inhibitor. Yang F; Zhang W; Jiang Y; Yin F; Han W; Li Z Biochemistry; 2020 Jan; 59(3):290-296. PubMed ID: 31702899 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field. Rojas A; Liwo A; Browne D; Scheraga HA J Mol Biol; 2010 Dec; 404(3):537-52. PubMed ID: 20888834 [TBL] [Abstract][Full Text] [Related]
12. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. Han W; Schulten K J Am Chem Soc; 2014 Sep; 136(35):12450-60. PubMed ID: 25134066 [TBL] [Abstract][Full Text] [Related]
14. A mobile precursor determines amyloid-β peptide fibril formation at interfaces. Shen L; Adachi T; Vanden Bout D; Zhu XY J Am Chem Soc; 2012 Aug; 134(34):14172-8. PubMed ID: 22867029 [TBL] [Abstract][Full Text] [Related]
15. Effect of surfaces on amyloid fibril formation. Moores B; Drolle E; Attwood SJ; Simons J; Leonenko Z PLoS One; 2011; 6(10):e25954. PubMed ID: 22016789 [TBL] [Abstract][Full Text] [Related]
16. Role of the familial Dutch mutation E22Q in the folding and aggregation of the 15-28 fragment of the Alzheimer amyloid-beta protein. Baumketner A; Krone MG; Shea JE Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6027-32. PubMed ID: 18408165 [TBL] [Abstract][Full Text] [Related]
17. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface. Barz B; Strodel B Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646 [TBL] [Abstract][Full Text] [Related]
18. Computational screening of nanoparticles coupling to Aβ40 peptides and fibrils. Sen S; Vuković L; Král P Sci Rep; 2019 Nov; 9(1):17804. PubMed ID: 31780663 [TBL] [Abstract][Full Text] [Related]
19. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675 [TBL] [Abstract][Full Text] [Related]
20. Effects of hydrophobic macromolecular crowders on amyloid β (16-22) aggregation. Latshaw DC; Hall CK Biophys J; 2015 Jul; 109(1):124-34. PubMed ID: 26153709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]