These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 39125038)

  • 21. Aggregation of an Amyloidogenic Peptide on Gold Surfaces.
    Cheung DL
    Biomolecules; 2023 Aug; 13(8):. PubMed ID: 37627326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aggregation rate of amyloid beta peptide is controlled by beta-content in monomeric state.
    Thu TTM; Co NT; Tu LA; Li MS
    J Chem Phys; 2019 Jun; 150(22):225101. PubMed ID: 31202253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation.
    Okumura H; Itoh SG
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation.
    Sonar K; Mancera RL
    J Phys Chem B; 2022 Oct; 126(40):7916-7933. PubMed ID: 36179370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural origin of polymorphism of Alzheimer's amyloid β-fibrils.
    Agopian A; Guo Z
    Biochem J; 2012 Oct; 447(1):43-50. PubMed ID: 22823461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.
    Reddy G; Straub JE; Thirumalai D
    J Phys Chem B; 2009 Jan; 113(4):1162-72. PubMed ID: 19125574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Helical intermediate formation and its role in amyloids of an amphibian antimicrobial peptide.
    Prasad AK; Martin LL; Panwar AS
    Phys Chem Chem Phys; 2023 May; 25(17):12134-12147. PubMed ID: 37070341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analysis of the Aβ(11-42) amyloid fibril based on hydrophobicity distribution.
    Roterman I; Dułak D; Gadzała M; Banach M; Konieczny L
    J Comput Aided Mol Des; 2019 Jul; 33(7):665-675. PubMed ID: 31292794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced beta-barrel formation of the Alzheimer's Abeta25-35 oligomers on carbon nanotube surfaces: implication for amyloid fibril inhibition.
    Fu Z; Luo Y; Derreumaux P; Wei G
    Biophys J; 2009 Sep; 97(6):1795-803. PubMed ID: 19751686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils.
    Khan MAI; Weininger U; Kjellström S; Deep S; Akke M
    Protein Eng Des Sel; 2019 Dec; 32(2):77-85. PubMed ID: 31832682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation.
    Wu JW; Breydo L; Isas JM; Lee J; Kuznetsov YG; Langen R; Glabe C
    J Biol Chem; 2010 Feb; 285(9):6071-9. PubMed ID: 20018889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils.
    Qiang W; Yau WM; Luo Y; Mattson MP; Tycko R
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4443-8. PubMed ID: 22403062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing energetics of Abeta fibril elongation by molecular dynamics simulations.
    Takeda T; Klimov DK
    Biophys J; 2009 Jun; 96(11):4428-37. PubMed ID: 19486667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the air-water interface on the conformation of amyloid beta.
    Samantray S; Cheung DL
    Biointerphases; 2020 Dec; 15(6):061011. PubMed ID: 33334114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.