These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 39126126)
1. A Microfluidic 3D-Tumor-Spheroid Model for the Evaluation of Targeted Therapies from Angiogenesis-Related Cytokines at the Single Spheroid Level. Liu M; Wang Y; Wang C; Li P; Qiu J; Yang N; Sun M; Han L Adv Healthc Mater; 2024 Aug; ():e2402321. PubMed ID: 39126126 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Lee Y; Chen Z; Lim W; Cho H; Park S Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Measurements of Intra-Cellular and Secreted Cytokine from Single Spheroids Using Anchored Microfluidic Droplets. Saint-Sardos A; Sart S; Lippera K; Brient-Litzler E; Michelin S; Amselem G; Baroud CN Small; 2020 Dec; 16(49):e2002303. PubMed ID: 33185938 [TBL] [Abstract][Full Text] [Related]
4. Integrating spheroid-on-a-chip with tubeless rocker platform: A high-throughput biological screening platform. Kheiri S; Chen Z; Yakavets I; Rakhshani F; Young EWK; Kumacheva E Biotechnol J; 2023 Oct; 18(10):e2200621. PubMed ID: 37436706 [TBL] [Abstract][Full Text] [Related]
5. Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study. Kheiri S; Kumacheva E; Young EWK Front Bioeng Biotechnol; 2021; 9():781566. PubMed ID: 34888303 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Prince E; Kheiri S; Wang Y; Xu F; Cruickshank J; Topolskaia V; Tao H; Young EWK; McGuigan AP; Cescon DW; Kumacheva E Adv Healthc Mater; 2022 Jan; 11(1):e2101085. PubMed ID: 34636180 [TBL] [Abstract][Full Text] [Related]
7. Single Spheroid Metabolomics: Optimizing Sample Preparation of Three-Dimensional Multicellular Tumor Spheroids. Rusz M; Rampler E; Keppler BK; Jakupec MA; Koellensperger G Metabolites; 2019 Dec; 9(12):. PubMed ID: 31847430 [TBL] [Abstract][Full Text] [Related]
8. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
9. 3D Multicellular Tumor Spheroids in a Microfluidic Droplet System for Investigation of Drug Resistance. Lee SI; Choi YY; Kang SG; Kim TH; Choi JW; Kim YJ; Kim TH; Kang T; Chung BG Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145898 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic platform for studying the anti-cancer effect of ursolic acid on tumor spheroid. Chang S; Wen J; Su Y; Ma H Electrophoresis; 2022 Jul; 43(13-14):1466-1475. PubMed ID: 35315532 [TBL] [Abstract][Full Text] [Related]
11. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
12. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Sankar S; Mehta V; Ravi S; Sharma CS; Rath SN Biomed Microdevices; 2021 Oct; 23(4):50. PubMed ID: 34596764 [TBL] [Abstract][Full Text] [Related]
13. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. Sarkar S; Peng CC; Tung YC PLoS One; 2020; 15(11):e0240833. PubMed ID: 33175874 [TBL] [Abstract][Full Text] [Related]
14. Multiplexed Viability Assays for High-Throughput Screening of Spheroids of Multiple Sizes. Marimuthu M; Gervais T Methods Mol Biol; 2023; 2644():435-447. PubMed ID: 37142939 [TBL] [Abstract][Full Text] [Related]
15. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
16. Monocyte Infiltration and Differentiation in 3D Multicellular Spheroid Cancer Models. Madsen NH; Nielsen BS; Nhat SL; Skov S; Gad M; Larsen J Pathogens; 2021 Jul; 10(8):. PubMed ID: 34451433 [TBL] [Abstract][Full Text] [Related]
17. Rapid spheroid assays in a 3-dimensional cell culture chip. Teh JL; Abdul Rahman SF; Domnic G; Satiyasilan L; Chear NJY; Singh D; Mohana-Kumaran N BMC Res Notes; 2021 Aug; 14(1):310. PubMed ID: 34389056 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Hong S; Song JM Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222 [TBL] [Abstract][Full Text] [Related]
20. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]