These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39126745)

  • 1. Large-scale flood modeling and forecasting with FloodCast.
    Xu Q; Shi Y; Bamber JL; Ouyang C; Zhu XX
    Water Res; 2024 Oct; 264():122162. PubMed ID: 39126745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting of compound ocean-fluvial floods using machine learning.
    Moradian S; AghaKouchak A; Gharbia S; Broderick C; Olbert AI
    J Environ Manage; 2024 Jul; 364():121295. PubMed ID: 38875991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing dynamic flood risk assessment and zoning using a coupled hydrological-hydrodynamic model and spatiotemporal information weighting method.
    Zhou L; Liu L
    J Environ Manage; 2024 Aug; 366():121831. PubMed ID: 39018862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning enables super-resolution hydrodynamic flooding process modeling under spatiotemporally varying rainstorms.
    He J; Zhang L; Xiao T; Wang H; Luo H
    Water Res; 2023 Jul; 239():120057. PubMed ID: 37167855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on runoff process vectorization and integration of deep learning algorithms for flood forecasting.
    Liu C; Li W; Hu C; Xie T; Jiang Y; Li R; Soomro SE; Xu Y
    J Environ Manage; 2024 Jun; 362():121260. PubMed ID: 38833924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on machine learning hybrid framework by coupling grid-based runoff generation model and runoff process vectorization for flood forecasting.
    Liu C; Xie T; Li W; Hu C; Jiang Y; Li R; Song Q
    J Environ Manage; 2024 Jul; 364():121466. PubMed ID: 38870784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing real-time error correction of flood forecasting based on the hydrologic similarity theory and machine learning techniques.
    Shi P; Wu H; Qu S; Yang X; Lin Z; Ding S; Si W
    Environ Res; 2024 Apr; 246():118533. PubMed ID: 38417660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring.
    Islam MDS; Sun X; Wang Z; Cheng I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models.
    Fraehr N; Wang QJ; Wu W; Nathan R
    Water Res; 2024 Mar; 252():121202. PubMed ID: 38290237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a novel artificial neural network model in flood forecasting.
    Wang G; Yang J; Hu Y; Li J; Yin Z
    Environ Monit Assess; 2022 Jan; 194(2):125. PubMed ID: 35076800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Compound Effect of Spatial and Temporal Resolutions on the Accuracy of Urban Flood Simulation.
    Li X; Wang L; Zhou H; Wang Y; Niu K; Li L
    Comput Intell Neurosci; 2022; 2022():3436634. PubMed ID: 35720912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.
    Hai PT; Magome J; Yorozuya A; Inomata H; Fukami K; Takeuchi K
    Water Sci Technol; 2010; 62(8):1859-64. PubMed ID: 20962401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-informed neural networks as surrogate models of hydrodynamic simulators.
    Donnelly J; Daneshkhah A; Abolfathi S
    Sci Total Environ; 2024 Feb; 912():168814. PubMed ID: 38016570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian process emulation of spatio-temporal outputs of a 2D inland flood model.
    Donnelly J; Abolfathi S; Pearson J; Chatrabgoun O; Daneshkhah A
    Water Res; 2022 Oct; 225():119100. PubMed ID: 36155010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STFS-urban: Spatio-temporal flood simulation model for urban areas.
    Guan Z; Chen Y; Zhao Y; Zhang S; Jin H; Yang L; Yan W; Zheng S; Lu P; Yang Q
    J Environ Manage; 2024 Jan; 349():119289. PubMed ID: 37890296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions.
    Mondal K; Bandyopadhyay S; Karmakar S
    J Environ Manage; 2023 Apr; 332():117312. PubMed ID: 36731405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting peak inundation depths with a physics informed machine learning model.
    Lee CC; Huang L; Antolini F; Garcia M; Juan A; Brody SD; Mostafavi A
    Sci Rep; 2024 Jun; 14(1):14826. PubMed ID: 38937603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble.
    Dankers R; Arnell NW; Clark DB; Falloon PD; Fekete BM; Gosling SN; Heinke J; Kim H; Masaki Y; Satoh Y; Stacke T; Wada Y; Wisser D
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3257-61. PubMed ID: 24344290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban flood risk warning under rapid urbanization.
    Chen Y; Zhou H; Zhang H; Du G; Zhou J
    Environ Res; 2015 May; 139():3-10. PubMed ID: 25769509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.