BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 391272)

  • 1. Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules.
    Zukin RS; Hartig PR; Koshland DE
    Biochemistry; 1979 Dec; 18(25):5599-605. PubMed ID: 391272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a distant reporter group as evidence for a conformational change in a sensory receptor.
    Zukin RS; Hartig PR; Koshland DE
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1932-6. PubMed ID: 325561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis.
    Mowbray SL
    J Mol Biol; 1992 Sep; 227(2):418-40. PubMed ID: 1328650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response.
    Strange PG; Koshland DE
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):762-6. PubMed ID: 768985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli.
    Zukin RS; Strange PG; Heavey R; Koshland DE
    Biochemistry; 1977 Feb; 16(3):381-6. PubMed ID: 319823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of two histidine-binding proteins of Salmonella typhimurium.
    Zukin RS; Klos MF; Hirsch RE
    Biophys J; 1986 Jun; 49(6):1229-35. PubMed ID: 3521754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the receptor for galactose taxis in Salmonella typhimurium.
    Fahnestock M; Koshland DE
    J Bacteriol; 1979 Feb; 137(2):758-63. PubMed ID: 370099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium.
    Robertson DE; Kroon PA; Ho C
    Biochemistry; 1977 Apr; 16(7):1443-51. PubMed ID: 321019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of catabolite repression on chemotaxis in Salmonella typhimurium.
    Koshland DE; Anderson MJ
    Mol Biol Biochem Biophys; 1980; 32():136-43. PubMed ID: 6777655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer.
    Park C; Hazelbauer GL
    J Bacteriol; 1986 Jul; 167(1):101-9. PubMed ID: 3087946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study.
    Danielson MA; Biemann HP; Koshland DE; Falke JJ
    Biochemistry; 1994 May; 33(20):6100-9. PubMed ID: 7910759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ribose binding protein of Salmonella typhimurium.
    Aksamit R; Koshland DE
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1348-53. PubMed ID: 4562155
    [No Abstract]   [Full Text] [Related]  

  • 13. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis.
    Kasinskas RW; Forbes NS
    Cancer Res; 2007 Apr; 67(7):3201-9. PubMed ID: 17409428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray structure of glucose/galactose receptor from Salmonella typhimurium in complex with the physiological ligand, (2R)-glyceryl-beta-D-galactopyranoside.
    Sooriyaarachchi S; Ubhayasekera W; Boos W; Mowbray SL
    FEBS J; 2009 Apr; 276(7):2116-24. PubMed ID: 19292879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the ribose binding protein as the receptor for ribose chemotaxis in Salmonella typhimurium.
    Aksamit RR; Koshland DE
    Biochemistry; 1974 Oct; 13(22):4473-8. PubMed ID: 4609457
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparative spectroscopic study of tryptophan probes engineered into high- and low-affinity domains of recombinant chicken troponin C.
    Trigo-Gonzalez G; Racher K; Burtnick L; Borgford T
    Biochemistry; 1992 Aug; 31(31):7009-15. PubMed ID: 1643035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis.
    Bass RB; Butler SL; Chervitz SA; Gloor SL; Falke JJ
    Methods Enzymol; 2007; 423():25-51. PubMed ID: 17609126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of subtilisin types Novo and Carlsberg by circular polarization of fluorescence.
    Schlessinger J; Roche RS; Steinberg IZ
    Biochemistry; 1975 Jan; 14(2):255-62. PubMed ID: 235273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational alteration in serum albumin as a carrier for pyridoxal phosphate: a distinction from pyridoxal phosphate-dependent glutamate decarboxylase.
    Zhang F; Thottananiyil M; Martin DL; Chen CH
    Arch Biochem Biophys; 1999 Apr; 364(2):195-202. PubMed ID: 10190974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular dichroism spectroscopy of heparin-antithrombin interactions.
    Stone AL; Beeler D; Oosta G; Rosenberg RD
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7190-4. PubMed ID: 6961402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.