These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 39127768)

  • 1. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
    Lyu R; Gao Y; Wu T; Ye C; Wang P; He C
    Nat Commun; 2024 Aug; 15(1):6852. PubMed ID: 39127768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome.
    Hansen TJ; Hodges E
    Genome Res; 2022 Aug; 32(8):1529-1541. PubMed ID: 35858748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of chromatin accessibility using ATAC-seq.
    Shashikant T; Ettensohn CA
    Methods Cell Biol; 2019; 151():219-235. PubMed ID: 30948010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis.
    Tatara M; Ikeda T; Namekawa SH; Maezawa S
    Methods Mol Biol; 2023; 2577():65-81. PubMed ID: 36173566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical Approaches for ATAC-seq Data Analysis.
    Smith JP; Sheffield NC
    Curr Protoc Hum Genet; 2020 Jun; 106(1):e101. PubMed ID: 32543102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv.
    Orchard P; Kyono Y; Hensley J; Kitzman JO; Parker SCJ
    Cell Syst; 2020 Mar; 10(3):298-306.e4. PubMed ID: 32213349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ.
    Wu T; Lyu R; You Q; He C
    Nat Methods; 2020 May; 17(5):515-523. PubMed ID: 32251394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways.
    Zhao Y; Zheng D; Cvekl A
    Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Mapping of Active Regulatory Elements Using ATAC-seq.
    Marinov GK; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2023; 2611():3-19. PubMed ID: 36807060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATAC-Seq for Assaying Chromatin Accessibility Protocol Using Echinoderm Embryos.
    Magri MS; Voronov D; Ranđelović J; Cuomo C; Gómez-Skarmeta JL; Arnone MI
    Methods Mol Biol; 2021; 2219():253-265. PubMed ID: 33074546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Chromatin Accessibility During WBR in Acoels.
    Gehrke AR; Srivastava M
    Methods Mol Biol; 2022; 2450():549-561. PubMed ID: 35359328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data.
    Thibodeau A; Khetan S; Eroglu A; Tewhey R; Stitzel ML; Ucar D
    PLoS Comput Biol; 2021 Dec; 17(12):e1009670. PubMed ID: 34898596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.
    Thibodeau A; Uyar A; Khetan S; Stitzel ML; Ucar D
    Sci Rep; 2018 Oct; 8(1):16048. PubMed ID: 30375457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the Epigenome Driving Drug Resistance by ATAC-Seq.
    de Nicola F; Corleone G; Goeman F
    Methods Mol Biol; 2022; 2535():171-185. PubMed ID: 35867231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATAC-Seq Reveals an
    Galang G; Mandla R; Ruan H; Jung C; Sinha T; Stone NR; Wu RS; Mannion BJ; Allu PKR; Chang K; Rammohan A; Shi MB; Pennacchio LA; Black BL; Vedantham V
    Circ Res; 2020 Dec; 127(12):1502-1518. PubMed ID: 33044128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An organism-wide ATAC-seq peak catalog for the bovine and its use to identify regulatory variants.
    Yuan C; Tang L; Lopdell T; Petrov VA; Oget-Ebrad C; Moreira GCM; Gualdrón Duarte JL; Sartelet A; Cheng Z; Salavati M; Wathes DC; Crowe MA; ; Coppieters W; Littlejohn M; Charlier C; Druet T; Georges M; Takeda H
    Genome Res; 2023 Oct; 33(10):1848-1864. PubMed ID: 37751945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.